Removal Of Zinc and Copper Ions with Zeolites: A Study of Molecular Dynamics Simulation

Document Type : Research Article

Authors

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, I.R. IRAN

Abstract

The molecular dynamics simulation technique can be used to examine systems that are difficult to achieve the experimental
The molecular dynamics simulation technique can be used to examine systems that are difficult to achieve the experimental values of some of their characteristics in unconventional conditions. In this work, molecular dynamics simulation methods of removal of heavy metals (zinc and copper) were evaluated by zeolites. The structural parameters, the adsorption of heavy metals of zinc and copper well as the adsorption energies were analyzed. Calculating the mean square displacements on zeolites, the amount of diffusion coefficient was calculated. The amount of diffusion coefficient in zeolite A is less than that of zeolite X, which indicates that the metal has less diffusion in zeolite and remains in the effluent and its removal by zeolite A is better. Heavy metal adsorption efficiency is 99.9% based on simulation and experimental data. The results show that Zn removal from zeolite surface requires more energy than copper since absorbed ions exhibit high stability at adsorbent surfaces.

Keywords

Main Subjects


[1] Ghasemi A., Asgarpour Khansary M., Marjani A., Shirazian S., Using Quantum Chemical Modeling and Calculations for Evaluation of Cellulose Potential for Estrogen Micropollutants Removal from Water Effluents, Chemosphere, 178: 411–423 (2017).
[2] Asgarpour Khansary M., Shirazian S., Asadollahzadeh M., Polymer-Water Partition Coefficients in Polymeric Passive Samplers, Environ. Sci. Pollut. Res. Int., 24(3): 2627–2631 (2017).
[4] Babel S., Kurniawan T.A., Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water, J. Hazard. Mater. B 97: 219-243 (2003).
[5] Wang S., Peng Y., Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment, Chem. Eng. J., 156: 11–24 (2010).
[6] Kwon J.S., Yun S.T., Lee J.H., Kim S.O., Jo H.Y., Removal of Divalent Heavy Metals (Cd, Cu, Pb, and Zn) and Arsenic (III) from Aqueous Solutions Using Scoria: Kinetics and Equilibria of sSorption, J. Hazard. Mater., 174: 307–313 (2010).
[7] Hollman G.G., Steenbruggen G., Janssen-Jurkovicova M., A Two-Step Process for the Synthesis of Zeolites from Coal Fly Ash, Fuel, 78(10): 1225–1230 (1999).
[8] Hui K.S., Chao C.Y.H., Effects of Step-Change of Synthesis Temperature on Synthesis of Zeolite 4A from Coal Fly Ash, Microporous Mesoporous Mater., 88(1-3): 145–151 (2006).
[9] Molina A., Poole C., A Comparative Study Using Two Methods to Produce Zeolite from Fly Ash, Miner. Eng., 17(2): 167–173 (2004).
[10] Park M., Choi C.L., Lim W.T., Kim M.C., Choi J., Heo N.H., Molten-Salt Method for the Synthesis of Zeolitic Materials: I. Zeolite Formation in Alkaline Molten-Salt System, Microporous Mesoporous Mater., 37(1-2): 81–89 (2000).
[11] Tanaka H., Sakai Y., Hino R., Formation of Na-A and Na-X Zeolites from Waste Solutions in Conversion of Coal Fly Ash to Zeolites, Mater. Res. Bull., 37 (11): 1873–1884 (2002).
[12] Caputo D., Pepe F., Experiments and Data Processing of Ion Exchange Equilibria Involving Italian Natural Zeolites, Microporous Mesoporous Mater., 105: 222–231 (2007).
[13] Zhang Y.S., “Development of Heavy Metal Adsorbed by Granulation of Natural Zeolite”, 18th World Congress of Soil Science, Philadelphia (2006).
[14] Neshat A.A., Ramazani A.A., Heidari M.R., Solimani N., Ahmadi A., Sheikhi Z., Investigation of Cadmium Removal Efficiency by Clinoptilolite from Aqueous Solutions, Quarterly Journal of Zabol University of Medical Sciences and Health Services, 5(3): 32-38 (2013).
[15] Wu J.Y., Liu Q.L., Xiong Y., Zhu A.M., Chen Y., Molecular Simulation of Water/Alcohol Mixtures’ Adsorption and Diffusion in Zeolite 4A Membranes, J. Chem. Phys., B 113, 4267–4274 (2009).
[16] Long Y.C., Qian M., Yang G.R., Wang Y.D., Hai Y., Absorption and Separation of EtOH-H2O on a Hydrophobic Siliceous Zeolite, Petrochem. Techn., 23: 356–358 (1994).
[17] Chen X., Ping Z.Y., Fu S.K., Long Y.L., Studies on Siliceous Zeolite ZSM- 5 Filled Silicone Rubber Membrane (II), Chemical Journal Chinese Universities, 14: 1190–1194 (1993).
[18] Dong W.Y., Cheng X.W., Cheng Y.F., Long Y.C., Permeabilities of Pure Gases and Separation Selectivities of Ethanol/Water Systems through Oriented B-Containing MFI-Type Zeolite Membranes, Acta Chim. Sinica, 62: 1573–1577 (2004).
[19] کوثری، محمد حسین؛ ترابی، سید محمد؛ شبیه سازی دینامیک مولکولی مایع یونی 1ـ بوتیل ـ 3 ـ متیل ـ ایمیدازولیوم نیترات و رفتار دینامیکی مخلوط های دوتایی مایع یونی ـ آب، نشریه شیمی و مهندسی شیمی ایران، (2)37: 103 تا 112 (1397).
[20] Chunfeng W., Jiansheng L., Xia S., Lianjun W., Xiuyun S., Evaluation of Zeolites Synthesized from Fly Ash as Potential Adsorbents for Wastewater Containing Heavy Metals, Journal of Environ. Sci., 21: 127-136 (2009).
[21] Greń W., Parker S.C., Structure of Zeolite A (LTA) Surfaces and the Zeolite A/Water Interface, J. Chem. Phys., 114: 9739-9747 (2010).