A Review of Methods for Recovering Metals from Electrical and Electronic Wastes, with an Emphasis on Bioleaching

Document Type : Review Article

Authors

Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

Abstract

Along with the development and industrialization of societies, the demand for heavy metals is on the rise, while the rich mineral ores of these metals have declined. Today, other sources of metals with higher grades, such as spent catalysts, fly ashes, electroplating sludge, and most importantly, electrical and electronic wastes have been taken into consideration. Recovery of heavy metals from these secondary sources by conventional methods such as pyrometallurgy and hydrometallurgy has some disadvantages including high energy consumption and high utilization costs, the risk of environmental pollution, and public health threats. Due to the strict environmental regulations, especially in the field of toxic waste disposal and also with the cost of applying these rules, there is a need for new, environmentally friendly, and more effective technology for recycling wastes. In this discussion, the methods of electrical and electronic waste recycling, which include pyrometallurgy, hydrometallurgy, and biohydrometallurgy have been studied. Among them, bioleaching has been introduced as an effective, inexpensive, and eco-friendly method.

Keywords

Main Subjects


[1] Mishra D., Rhee Y.H., Microbial leaching of Metals from Solid Industrial WastesJ. Microbiol., 52(1):1–7 (2014).
[2] Nawaz H., Asif M., Biosorption of Pb (II) and Co (II) on Red Rose Waste Biomass, Iran. J. Chem. Chem. Eng.(IJCCE), 30(4): 81–88 (2011).
[4] احمدی اسبچین، سلمان؛ پوربابایی، احمدعلی؛ آندره، ایو، بررسی فرایند جذب زیستی همزمان دو فلز روی/ نیکل به وسیله جلبک قهوه‌ای فوکوس سراتوس، نشریه شیمی و مهندسی شیمی ایران، (1)32: 85 تا91 (1392).
[5] González-Muñoz M.J., Rodríguez M.A., Luque S., Álvarez J.R., Recovery of Heavy Metals
from Metal Industry Waste Waters By Chemical Precipitation and Nanofiltration
, Desalination, 200(1–3):742–744 (2006).
[7] Wang S., Zheng Y., Yan W., Chen L., Dummi Mahadevan G., Zhao F., Enhanced Bioleaching Efficiency of Metals from E-Wastes Driven by Biochar, J. Hazard. Mater., 320:393–400 (2016).
[8] Ilyas S., Lee J.C., Chi R.A., Bioleaching of Metals from Electronic Scrap and Its Potential for Commercial Exploitation, Hydrometallurgy, 131132:138–143 (2013).
[9] Villares M., Işildar A., Mendoza Beltran A., Guinee J., Applying an Ex-ante Life Cycle Perspective to Metal Recovery from E-Waste Using Bioleaching, J. Clean. Prod., 129:315–328 (2016).
[10] Robinson B.H., E-waste: An Assessment of Global Production and Environmental ImpactsSci. Total Environ., 408(2):183–191 (2009).
[11] Veit H.M., & Bernardes A.M., "Electronic Waste: Recycling Techniques", Springer International Publishing (2015).
[12] خبرگزاری افکارنیوز، بیماری‌های ناشی از زباله‌های الکترونیک. شناسه خبر: ۵۰۲۴۵۶، تاریخ گزارش 22/۰۱/1395.
[13] Ongondo F.O., Williams I.D., Cherrett T.J., How Are WEEE Doing? A Global Review ofthe Management of Electrical and Electronic Wastes, Waste Manag., 31(4):714–730 (2011).
[14] Perkins D.N., Brune Drisse M.N., Nxele T., & Sly P.D., E-Waste: A Global Hazard, Ann. Glob. Heal., 80(4):286–295 (2014).
[15] خبرگزاری تسنیم. تکنولوژی علیه محیط‌زیست؛ خوب و بد خروج زباله‌های الکترونیک از کشور. شناسه خبر 714417. تاریخ گزارش 5/02/94.
[16] Hoque M.E., Philip O.J., Biotechnological Recovery of Heavy Metals from Secondary Sources-An Overview, Mater. Sci. Eng. C, 31(2):57–66 (2011).
[17] Amankwah-Amoah J., Global Business and Emerging Economies: Towards a New Perspective on the Effects of E-Waste, Technol. Forecast. Soc. Change, 105:20–26 (2016).
[18] Hong Y., Valix M., Bioleaching of Electronic Waste Using Acidophilic Sulfur Oxidising Bacteria, J. Clean. Prod., 65:465–472 (2014).
[19] Pathak A., Morrison L., Healy M. G., Catalytic Potential of Selected Metal Ions for Bioleaching, and Potential Techno-economic and Environmental Issues: A Critical Review. Bioresource technology, 229:211­221 (2017).
[20] Mousavi S.M., Vossoughi M., Yaghmaei S., Jafari A., Copper Recovery from Chalcopyrite Concentrate by an indigenous Acidithiobacillus ferrooxidans in an Air-Lift Bioreactor, Iran. J. Chem. Chem. Eng. (IJCCE), 25(3):21–26 (2006).
[21] Havlik T., Orac D., Petranikova M., Miskufova A., Kukurugya F., Takacova Z., Leaching of Copper and Tin from Used Printed Circuit Boards after Thermal Treatment, J. Hazard. Mater., 183(1–3):866–873 (2010).
[22] Jadhav U.U., Hocheng H., A Review of Recovery of Metals from Industrial Waste, J. Achiev. Mater. Manuf. Eng., 54(2):159–167 (2012).
[23] Rossini G., Bernardes A.M., Galvanic Sludge Metals Recovery by Ppyrometallurgical and Hydrometallurgical Treatment, J. Hazard. Mater., 131(1–3):210–216 (2006).
[24] Huang K., Li J., Xu Z., Characterization and Recycling of Cadmium from Waste Nickel-Cadmium Batteries, Waste Manag., 30(11):2292–2298 (2010).
[25] Cui J., Zhang L., Metallurgical Recovery of Metals from Electronic Waste: A Review, J. Hazard. Mater., 158(2–3):228–256 (2008).
[26] Pradhan J.K., Kumar S., Metals Bioleaching from Electronic Waste by Chromobacterium violaceum and Pseudomonads sp, Waste Manag. Res., 30(11):1151–1159 (2012).
[27] Shahrabi-Farahani M., Yaghmaei S., Mousavi S.M., Amiri F., Bioleaching of Heavy Metals from a Petroleum Spent Catalyst Using Acidithiobacillus thiooxidans in a Slurry Bubble Column Bioreactor, Sep. Purif. Technol., 132:41–49 (2014).
 [28] Xu J., Thomas H.R., Francis R.W., Lum K.R., Wang J., Liang B., A Review of Processes and Technologies for the Recycling of Lithium-Ion Secondary Batteries, J. Power Sources, 177(2):512–527 (2008).
[30] Kinoshita T., Akita S., Kobayashi N., Nii S., Kawaizumi F., Takahashi K., Metal Recovery from Non-Mounted Printed Wiring Boards via Hydrometallurgical Processing, Hydrometallurgy, 69(1–3): 73–79 (2003).
[31] Park Y.J., Fray D.J., Separation of Zinc and Nickel Ions in a Strong Acid through Liquid-Liquid Extraction, J. Hazard. Mater., 163(1): 259–265 (2009).
[32] Castro L.A., Martins A.H., Recovery of Tin and Copper by Recycling of Printed Circuit Boards from Obsolete Computers, Brazilian J. Chem. Eng., 26(4):649–657 (2009).
[33] Deveci H., Yazici E., Aydin U., Yazici R., Akcil A., Extraction of copper from Scrap TV Boards by Sulphuric Acid Leaching under Oxidising Conditions, Proc. Going Green-CARE Innov., 8-11 (2011).
[34] Kato T., Igarashi S., Ishiwatari Y., Furukawa M., Yamaguchi H., Separation and Concentration of Indium from a Liquid Crystal Display via Homogeneous Liquid-Liquid Extraction, Hydrometallurgy, 137:148–155 (2013).
[35] Jha M.K., Kumari A., Jha A.K., Kumar V., Hait J., Pandey B.D., Recovery of Lithium and Cobalt from Waste Lithium-Ion Batteries of Mobile Phone, Waste Manag., 33(9):1890–1897 (2013).
[36] Li L., Ge J., Chen R., Wu F., Chen S., Zhang X., Environmental Friendly Leaching Reagent for Cobalt and Lithium Recovery from Spent Lithium-Ion Batteries, Waste Manag., 30(12):2615–2621 (2010).
[38] Bahaloo-Horeh N., Mousavi S.M., Shojaosadati S.A., Bioleaching of Valuable Metals from Spent Lithium-Ion Mobile Phone Batteries Using Aspergillus niger, J. Power Sources, 320:257–266 (2016).
[39] Ruan J., Zhu X., Qian Y., Hu J., A New Strain for Recovering Precious Metals from Waste Printed Circuit Boards, Waste Manag., 34(5):901–907 (2014).
[40] Amiri F., Yaghmaei S., Mousavi S.M., Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum, Bioresour. Technol., 102(2):1567–1573 (2011).
[41] Kim M.J., Seo J.Y., Choi Y.S., Kim G.H., Bioleaching of Spent Zn-Mn or Ni-CdBatteries by Aspergillus species, Waste Manag., 51:168–173 (2016).
[42] Yang Y., Chen S., Li S., Chen M., Chen H., Liu B., Bioleaching Waste Printed Circuit Boards by Acidithiobacillus ferrooxidans and Its Kinetics Aspect, J. Biotechnol., 173(1):24–30 (2014).
[43] مشکینی، محمد؛ ایران‌نژاد، مهدی؛ آزادمه، امیررضا؛ سمیعی بیرق، عبداله، بررسی امکان استخراج روی از کانی‌های کم عیار اکسیدی با استفاده از باکتری هتروتروف Pseudomonas aeruginosa و تطبیق باکتری به غلظت بالای یون روی، نشریه شیمی و مهندسی شیمی ایران، 32(1):93–100 (2013).
[45] Vakilchap F., Mousavi S.M., Shojaosadati S.A., Role of Aspergillus niger in Recovery Enhancement of Valuable Metals from Produced Red Mud in Bayer Process, Bioresour. Technol., 218:991–998 (2016).
[46] Jadhao P., Chauhan G., Pant K.K., Nigam K.D.P., Greener Approach for the Extraction of Copper Metal from Electronic Waste, Waste Manag., 57:102–112 (2016).
[47] Asghari I., Mousavi S.M., Amiri F., Tavassoli S., Bioleaching of Spent Refinery Catalysts: A Review, J. Ind. Eng. Chem., 19(4):1069–1081 (2013).
[48] Rivero C.P., Hu Y., Kwan T.H., Webb C., Theodoropoulos C., Daoud W., Lin C.S.K., Current Developments In Biotechnology and Bioengineering, J. Clean. Prod., 158:380-381 (2017).
[50] Mehrabani J. V., Shafaei S.Z., Noaparast M., Mousavi S.M., Bioleaching of High Pyrite Carbon-Rich Sphalerite Preflotation Tailings, Environ. Earth Sci., 71(11):4675–4682 (2014).
[51] Rastegar S.O., Mousavi S.M., Shojaosadati S.A., Sarraf Mamoory R., Bioleaching of V, Ni, and Cu from Residual Produced in Oil-Fired Furnaces Using Acidithiobacillus ferrooxidans, Hydrometallurgy, 157:50–59 (2015).
[52] Pant D., A Review of Electronic Waste Management Microbial Participation: a Green Technology, Int. J. Environ. Waste Manag., 13(1): 23 (2014).
[53] Wong, J. W., Tyagi, R. D., Pandey, A., Current Developments in Biotechnology and Bioengineering: Solid Waste Management., Elsevier (2016).
[54] Brandl H., Bosshard R., Wegmann M., Computer-Munching Microbes: Metal Leaching from Electronic Scrap by Bacteria and Fungi, Process Metall., 9(C):569–576 (1999).
[55] Choi M.-S., Cho K.-S., Kim D.-J.D.-S., Kim D.-J.D.-S., Microbial Recovery of Copper from Printed Circuit Boards of Waste Computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Heal. Part A- Toxic/Hazardous Subst. Environ. Eng., 39:2973–2982 (2004).
[56] Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H., Metal Solubilization from Metal-Containing Solid Materials by Cyanogenic Chromobacterium violaceum, J. Biotechnol.113(1–3): 321–326 (2004).
[57] Creamer N.J., Baxter-Plant V.S., Henderson J., Potter M., Macaskie L.E., Palladium and Gold Removal and Recovery from Precious Metal Solutions and Electronic Scrap Leachates by Desulfovibrio desulfuricans, Biotechnol. Lett., 28(18):1475–1484 (2006).
[58] Chi T.D., Lee J.C., Pandey B.D., Yoo K., Jeong J., Bioleaching of Gold and Copper from Waste Mobile Phone PCBs by Using a Cyanogenic Bacterium, Miner. Eng., 24(11):1219–1222 (2011).
[59] Zhang C., Cai Y., Wang J., Bai J., Zhou Y., Wu W., Mao W., Recovery of Copper from  Bio-Leaching Solutions of Waste Printed Circuit Boards Waste by Ion Exchange, Proc. - 2010 Int. Conf. Digit. Manuf. Autom. ICDMA 2010, 2:138–140 (2010).
[60] Vestola E.A., Kuusenaho M.K., Närhi H.M., Tuovinen O.H., Puhakka J.A., Plumb J.J., Kaksonen A.H., Acid Bioleaching of Solid Waste Materials From Copper, Steel and Recycling Industries, Hydrometallurgy, 103(1–4):74–79 (2010).
[61] Ilyas S., Ruan C., Bhatti H.N., Ghauri M.A., Anwar M.A., Column Bioleaching of Metals from Electronic Scrap, Hydrometallurgy, 101(3–4):135–140 (2010).
[62] Xiang Y., Wu P., Zhu N., Zhang T., Liu W., Wu J., Li P., Bioleaching of Copper from Waste Printed Circuit Boards by Bacterial Consortium Enriched from Acid Mine Drainage, J. Hazard. Mater., 184(1–3):812–818 (2010).
[63] Yamane, Luciana Harue, Denise Crocce Romano Espinosa, and Jorge Alberto Soares Tenório., Recovery of Copper From Printed Circuit Boards Waste by Bioleaching, "Recycling of Electronic Waste II: Proceedings of the Second Symposium", John Wiley & Sons, Inc., (2011).
[64] Zhu N., Xiang Y., Zhang T., Wu P., Dang Z., Li P., Wu J., Bioleaching of Metal Concentrates of Waste Printed Circuit Boards by Mixed Culture of Acidophilic Bacteria, J. Hazard. Mater., 192(2):614–619 (2011).
[65] Wang Q., Yang J., Wang Q., Wu T., Effects of Water-Washing Pretreatment on Bioleaching of Heavy Metals from Municipal Solid Waste Incinerator Fly Ash, J. Hazard. Mater., 162(2–3): 812–818 (2009).
[66] Zhang T., Zhu N., Cheng D., Wu P., PCR-DGGE Analysis of Microbial Community During Bioleaching Process of Waste Printed Wire Boards by Acidophilic Bacteria, Guocheng Gongcheng Xuebao/Chinese J. Process Eng, 12:466–471 (2012).
[67] Simona C.C., & Micle V., Consideration Concerning Factors Influencing Bioleaching Processes, 4:76–79 (2011).
[68] Brandl H., Lehmann S., Faramarzi M.A., Martinelli D., Biomobilization of Silver, Gold, and Platinum from Solid Waste Materials by HCN-Forming Microorganisms, Hydrometallurgy, 94(1–4):14–17 (2008).
[69] Brandl, H., Microbial Leaching of Metals, Biotechnology Set, Second Edition, 191-224 (2008).
[70] Natarajan G., Ting Y.P., Pretreatment of e-Waste and Mutation of Alkali-Tolerant Cyanogenic Bacteria Promote Gold Biorecovery, Bioresour. Technol., 152:80–85 (2014).
[71] Bosecker K., Bioleaching: Metal Solubilization by Microorganisms, FEMS Microbiol. Rev., 20(3–4): 591–604 (1997).
[72] Chi T.D., Lee J.C., Pandey B.D., Yoo K., Jeong J., Bioleaching of Gold and Copper from Waste Mobile Phone PCBs by Using a Cyanogenic Bacterium, Miner. Eng., 24(11):1219–1222 (2011).
[74] Amiri F., Mousavi S.M., Yaghmaei S., Barati M., Bioleaching Kinetics of a Spent Refinery Catalyst Using Aspergillus niger at Optimal Conditions, Biochem. Eng. J., 67:208–217 (2012).
[76] Ijadi Bajestani M., Mousavi S.M., Shojaosadati S.A., Bioleaching of Heavy Metals from Spent Household Batteries Using Acidithiobacillus ferrooxidans: Statistical Evaluation and Optimization, Sep. Purif. Technol., 132: 309–316 (2014).
[77] Santhiya D., Ting Y.-P., Use of Adapted Aspergillus niger in the Bioleaching of Spent Refinery Processing Catalyst., J. Biotechnol., 121(1):62–74 (2006).
[78] Yang J., Wang Q., Wang Q., Wu T., Heavy Metals Extraction from Municipal Solid Waste Incineration Fly Ash Using Adapted Metal Tolerant Aspergillus niger., Bioresour. Technol., 100(1):254–60 (2009).