Review of Polymerization and Green Polymers Producing in the Supercritical Carbon Dioxide (SC-CO2)

Document Type : Review Article

Authors

Department of Chemical Engineering, University of Kashan, Kashan, I.R. IRAN

Abstract

In recent decades, orientations of different sciences are applying the methods which have less effect on the environment and reduce the wastes. For these reasons, producing the polymers with intermediate media (solvent and anti-solvent) of supercritical carbon dioxide is not only a good replacement but also eliminates the problems that were mentioned before. In this article, different processes of homogeneous and heterogeneous polymerization and the polymers which have been produced in this media, have been reviewed. The emulsion polymerizations of water and supercritical carbon dioxide, the polymers applied in the medical purpose and the porous polymers have been studied too. In addition, emulsifiers and stabilizers applied in this field were classified. A review of the research shows the growing and progressing in applying of these solvents, modifying and optimization these methods in the green and sustainable development process.

Keywords

Main Subjects


[1] Kamali, H., E. Khodaverdi, and F. Hadizadeh, Ring-opening polymerization of PLGA-PEG-PLGA triblock copolymer in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2018. 137: p. 9-15.
[2] Kamali, H., et al., Ring-opening polymerization of poly (d, l-lactide-co-glycolide)-poly (ethylene glycol) diblock copolymer using supercritical CO2. The Journal of Supercritical Fluids, 2019. 145: p. 133-139.
[3] Scholsky, K.M., Polymerization reactions at high pressure and supercritical conditions. TheJournal of Supercritical Fluids, 1993. 6(2): p. 103-127.
[4] Yeo, S.-D. and E. Kiran, Formation of polymer particles with supercritical fluids: a review. The Journal of Supercritical Fluids, 2005. 34(3): p. 287-308.
[5] Sodeifian, G. and K. Ansari, Optimization of Ferulago Angulata oil extraction with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2011. 57(1): p. 38-43.
[6] Sodeifian, G., N.S. Ardestani, and S.A. Sajadian, Extraction of seed oil from Diospyros lotus optimized using response surface methodology. Journal of Forestry Research: p. 1-11.
[8] Sodeifian, G., et al., Properties of Portulaca oleracea seed oil via supercritical fluid extraction: experimental and optimization. The Journal of Supercritical Fluids, 2018. 135: p. 34-44.
[10] Sodeifian, G., J. Azizi, and S. Ghoreishi, Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide. The Journal of Supercritical Fluids, 2014. 95: p. 1-7.
[11] Sodeifian, G., et al., Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling. The Journal of Supercritical Fluids, 2016. 110: p. 265-274
[12] Sodeifian, G. and S.A. Sajadian, Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide. The Journal of Supercritical Fluids, 2017. 121: p. 52-62.
[13] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: experimental and optimization. The Journal of Supercritical Fluids, 2016. 107: p. 137-144.
[14] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: process optimization and oil properties. The Journal of Supercritical Fluids, 2017. 119: p. 139-149.
[15] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Optimization of essential oil extraction from Launaea acanthodes Boiss: utilization of supercritical carbon dioxide and cosolvent. The Journal of Supercritical Fluids, 2016. 116: p. 46-56.
[17] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Evaluation of the response surface and hybrid artificial neural network-genetic algorithm methodologies to determine extraction yield of Ferulago angulata through supercritical fluid. Journal of the Taiwan Institute of Chemical Engineers, 2016. 60: p. 165-173.
[18] Sodeifian, G., S.A. Sajadian, and B. Honarvar, Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Natural product research, 2018. 32(7): p. 795-803.
[19] Sodeifian, G., S.A. Sajadian, and F. Razmimanesh, Solubility of an antiarrhythmic drug (amiodarone hydrochloride) in supercritical carbon dioxide: Experimental and modeling. Fluid Phase Equilibria, 2017. 450: p. 149-159.
[21] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Determination of solubility of Aprepitant (an antiemetic drug for chemotherapy) in supercritical carbon dioxide: Empirical and thermodynamic models. The Journal of Supercritical Fluids, 2017. 128: p. 102-111.
[22] Wang, R. and H.M. Cheung, Ultrasound assisted polymerization of MMA and styrene in near critical CO2. The Journal of supercritical fluids, 2005. 33(3): p. 269-274.
[23] Boyère, C., C. Jérôme, and A. Debuigne, Input of supercritical carbon dioxide to polymer synthesis: An overview. European Polymer Journal, 2014. 61: p. 45-63.
[24] Kiran, E., Supercritical fluids and polymers–The year in review–2014. The Journal of Supercritical Fluids, 2016. 110: p. 126-153.
[25] Kemmere, M.F. and T. Meyer, Supercritical carbon dioxide: in polymer reaction engineering. 2006: John Wiley & Sons.
[27] گودرزنیا, ا. and ع. سعیدی, بازیافت روغن موتور کارکرده به روش استخراج فوق بحرانی با کربن دی اکسید. نشریه شیمی و مهندسی شیمی ایران, 2012. (3)31:صفحات 44-39 .
[30] Sodeifian, G., F. Razmimanesh, and S.A. Sajadian, Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model. The Journal of Supercritical Fluids, 2019.
[36] Reverchon, E., et al., Supercritical fluids processing of polymers for pharmaceutical and medical applications. The Journal of Supercritical Fluids, 2009. 47(3): p. 48492-4
[37] Goñi, M.L., et al., Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. The Journal of Supercritical Fluids, 2016. 111: p. 28-35.
[38] Brunner, G., Supercritical fluids: technology and application to food processing. Journal of food engineering, 2005. 67(1-2): p. 21-33.
[39] Sakakura, T., J.-C. Choi, and H. Yasuda, Transformation of carbon dioxide. Chemical Reviews, 2007. 107(6): p. 2365-2387.
[40] Rayner, C.M., The potential of carbon dioxide in synthetic organic chemistry. Organic Process Research & Development, 2007. 11(1): p. 121-132.
[41] Said-Galiyev, E., I. Pototskaya, and Y.S. Vygodskii, Supercritical carbon dioxide and polymers. Polymer Science, Series C: Reviews, 2004. 46(1): p. 1-13.
[42] DeSimone, J., Z. Guan, and C. Elsbernd, Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992. 257(5072): p. 945-947.
[43] Bonavoglia, B., et al., Sorption and swelling of semicrystalline polymers in supercritical CO2. Journal of PolymerScience Part B: Polymer Physics, 2006. 44(11): p. 1531-1546.
[44] Kazarian, S., Polymer processing with supercritical fluids. Polymer science series CC/C of vysokomolekuliarnye soedineniia, 2000. 42(1): p. 78-101.
[45] Walker, T.A., D.J. Frankowski, and R.J. Spontak, Thermodynamics and kinetic processes of polymer blends and block copolymers in the presence of pressurized carbon dioxide. Advanced Materials, 2008. 20(5): p. 879-898.
[47] Su, W.-F., Principles of Polymer Design and Synthesis. 2013, Springer Berlin Heidelberg.
[48] Kendall, J.L., et al., Polymerizations in supercritical carbon dioxide. Chemical reviews, 1999. 99(2): p. 543-564.
[49] Available from: www.wikipedia.com.
[50] Ihata, O., Y. Kayaki, and T. Ikariya, Synthesis of Thermoresponsive Polyurethane from 2‐Methylaziridine and Supercritical Carbon Dioxide. Angewandte Chemie, 2004. 116(6): p. 735-737.
[52] Matyjaszewski, K. and T.P. Davis, Handbook of radical polymerization. 2003: John Wiley & Sons.
[53] Matyjaszewski, K. and J. Spanswick, Controlled/living radical polymerization. Materials Today, 2005. 8(3): p. 26-33.
[54] Polloni, A.E., et al., Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. The Journal of Supercritical Fluids, 2017. 119: p. 221-228.
[55] Guindani, C., et al., Enzymatic ring opening copolymerization of globalide and ε-caprolactone under supercritical conditions. The Journal of Supercritical Fluids, 2017. 128: p. 404-411.
[56] Du, L., et al., Fluoropolymer synthesis in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2009. 47(3): p. 447-457.
[57] Kwon, S., et al., Synthesis of a biocompatible polymer using siloxane-based surfactants in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2008. 45(3): p. 391-399.
[60] Inoue, S., H. Koinuma, and T. Tsuruta, Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part B: Polymer Letters, 1969. 7(4): p. 287-292.
[61] DeSimone, J., et al., Dispersion polymerizations in supercritical carbon dioxide. Science, 1994. 265(5170): p. 356-359.
[64] Costa, L.I., et al., The rate of polymerization in two loci reaction systems: VDF‐HFP precipitation copolymerization in supercritical carbon dioxide. Polymer Engineering & Science, 2011. 51(10): p. 2093-2102.
[65] Birkin, N.A., et al., Synthesis and application of new CO 2-soluble vinyl pivalate hydrocarbon stabilisers via RAFT polymerisation. Polymer Chemistry, 2011. 2(6): p. 1293-1299.
[66] Ye, W. and J.M. DeSimone, Emulsion polymerization of N-ethylacrylamide in supercritical carbon dioxide. Macromolecules, 2005. 38(6): p. 2180-2190
[67] Ye, W. and J.M. DeSimone, Synthesis of sugar-containing amphiphiles for liquid and supercritical carbon dioxide. Industrial & engineering chemistry research, 2000. 39(12): p. 4564-4566.
[68] Ye, W., S. Wells, and J.M. DeSimone, Well‐defined glycopolymer amphiphiles for liquid and supercritical carbon dioxide applications. Journal of Polymer Science Part A: Polymer Chemistry, 2001. 39(21): p. 3841-3849.
[69] Bratton, D., M. Brown, and S.M. Howdle, Suspension polymerization of L-lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer. Macromolecules, 2003. 36(16): p. 5908-5911.
[70] Bratton, D., M. Brown, and S.M. Howdle, Synthesis of poly (glycolide) in supercritical carbon dioxide in the presence of a hydrocarbon stabiliser. Chemical Communications, 2004(7): p. 808-809
[71] Hussain, Y.A., T. Liu, and G.W. Roberts, Synthesis of cross-linked, partially neutralized poly (acrylic acid) by suspension polymerization in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2012. 51(35): p. 11401-11408.
[72] Wang, T., et al., Suspension Polymerization of Poly (l-lactide-co-p-dioxanone) in Supercritical Carbon Dioxide. Journal of Polymers and the Environment, 2012. 20(1): p. 157-163.
[73] Lee, C.T., et al., Water-in-carbon dioxide emulsions: formation and stability. Langmuir, 1999. 15(20): p. 6781-6791.
[74] Available from: www.X-MOL.com.
[75] Clarke, M.J., et al., Water in supercritical carbon dioxide microemulsions: spectroscopic investigation of a new environment for aqueous inorganic chemistry. Journal of the American Chemical Society, 1997. 119(27): p. 6399-6406.
[76] Jacobson, G.B., C.T. Lee, and K.P. Johnston, Organic synthesis in water/carbon dioxide microemulsions. The Journal of Organic Chemistry, 1999. 64(4): p. 1201-1206.
[77] Holmes, J., et al., Bioconversions in a water-in-CO2 microemulsion. Langmuir, 1998. 14(22): p. 6371-6376.
[78] Aymonier, C., et al., Review of supercritical fluids in inorganic materials science. The Journal of Supercritical Fluids, 2006. 38(2): p. 242-251.
[79]Tsivintzelis, I., E. Pavlidou, and C. Panayiotou, Biodegradable polymer foams prepared with supercritical CO2–ethanol mixtures as blowing agents. The Journal of Supercritical Fluids, 2007. 42(2): p. 265-272.
[80]Tan, B. and A.I. Cooper, Functional oligo (vinyl acetate) CO2-philes for solubilization and emulsification. Journal of the American Chemical Society, 2005. 127(25): p. 8938-8939.
[83] Wang, J., et al., Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006. 16(18): p. 1751-1756.
[85] بختیاری دوست, ا.و همکاران  ساخت سیلیکاژل دانسیته پایین با استفاده از مایع‌های فوق بحرانی. نشریه شیمی و مهندسی شیمی ایران, 2013. (4)32: صفحات 16-1.
[86] Lee, J.-Y., B. Tan, and A.I. Cooper, CO2-in-water emulsion-templated poly (vinyl alcohol) hydrogels using poly (vinyl acetate)-based surfactants. Macromolecules, 2007. 40(6): p. 1955-1961
[87]  Available from: http:edu.nano.ir.
[88] Adkins, S.S., et al., Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants. Langmuir, 2010. 26(8): p. 5335-5348.
[89] Harrison, K., et al., Water-in-carbon dioxide microemulsions with a fluorocarbon-hydrocarbon hybrid surfactant. Langmuir, 1994. 10(10): p. 3536-3541.
[90] Eastoe, J., et al., Fluoro-surfactants at air/water and water/CO2 interfaces. Physical Chemistry Chemical Physics, 2000. 2(22): p. 5235-5242.
[92] Loeker, F., P.C. Marr, and S.M. Howdle, FTIR analysis of water in supercritical carbon dioxide microemulsions using monofunctional perfluoropolyether surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 214(1-3): p. 143-150.
[93] Woods, H.M., et al., Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. Journal of Materials Chemistry, 2004. 14(11): p. 1663-1678.
[94] Adamsky, F. and E. Beckman, Inverse emulsion polymerization of acrylamide in supercritical carbon dioxide. Macromolecules, 1994. 27(1): p. 312-314.
[95] Ye, W.-j., J.S. Keiper, and J.M. DeSimone, Polymeric nanoparticles from supercritical CO2 microemulsion polymerization. Chinese journal of polymer science, 2006. 24(01): p. 95-101.
[96] da Rocha, S.R., et al., Stubby surfactants for stabilization of water and CO2 emulsions: Trisiloxanes. Langmuir, 2003. 19(8): p. 3114-3120.
[97] Hollamby, M.J., et al., Tri‐Chain Hydrocarbon Surfactants as Designed Micellar Modifiers for Supercritical CO2. Angewandte Chemie International Edition, 2009. 48(27): p. 4993-4995
[98] Da Rocha, S.R., K.L. Harrison, and K.P. Johnston, Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide. Langmuir, 1999. 15(2): p. 419-428.
[99] Swami, A., et al., Langmuir–Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air–water interface. Journal of colloid and interface science, 2003. 260(2): p. 367-373.
[100] Dinsmore, A., et al., Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 2002. 298(5595): p. 1006-1009.
[101] Worthen, A.J., et al., Carbon dioxide‐in‐water foams stabilized with nanoparticles and surfactant acting in synergy. AIChE Journal, 2013. 59(9): p. 3490-3501
[102] Li, J., A.P. Hitchcock, and H.D. Stöver, Pickering emulsion templated interfacial atom transfer radical polymerization for microencapsulation. Langmuir, 2010. 26(23): p. 17926-17935.
[104] Available from: www.semanticscholar.org.
[105] Klostermann, M., et al., Microstructure of supercritical CO 2-in-water microemulsions: a systematic contrast variation study. Physical Chemistry Chemical Physics, 2011. 13(45): p. 20289-20301.
[106] Butler, R., I. Hopkinson, and A. Cooper, Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the american chemical society, 2003. 125(47): p. 14473-14481.
[109] Tang, J., et al., Enhanced CO2 absorption of poly (ionic liquid) s. Macromolecules, 2005. 38(6): p. 2037-2039.
[110] Wilke, A., et al., Enhanced carbon dioxide adsorption by a mesoporous poly (ionic liquid). ACS Macro Letters, 2012,1(8).: p. 1028-1031.
[113] Takamoto, T., H. Uyama, and S. Kobayashi, Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-Polymers, 2001. 1(1)
[114] Bergeot, V., et al., Anionic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide: parameters influencing the reactivity. The Journal of supercritical fluids, 2004. 28(2-3): p. 249-261.
[115] Shiho, H. and J.M. DeSimone, Dispersion polymerization of 2‐hydroxyethyl methacrylate in supercritical carbon dioxide. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(20): p. 3783-3790.
[116] Beuermann, S. and M. Imran‐Ul‐Haq. Homogeneous phase polymerization of vinylidene fluoride in supercritical CO2: Surfactant free synthesis and kinetics. in Macromolecular symposia. 2007,Wiley Online Library.
[118] Fukui K, K.T., Yokota H, Toriuchi Y, Kuniyoshi, K., US Patent 3522228A, 1970.
[119] French Patent :FR1524533, 1968
[120] PCT Patent:WO1996037535A1, 1995.
[121] Reverchon, E., S. Cardea, and C. Rapuano, Formation of poly‐vinyl‐alcohol structures by supercritical CO2. Journal of applied polymer science, 2007. 104(5): p. 3151-3160.