Design and Synthesis of New 19-25 Membered Aza-Macrocycles Based on 2,4,6-Triarylpyridine

Document Type : Research Article


Faculty of Chemistry, Kharazmi University, Tehran, I.R. IRAN


Formation of macrocycle from non-cyclic precursors is inherently difficult. In this research, to minimizing of this problem, two methods, crab-like, and template-directed synthesis were run together simultaneously, to afford new eleven aza macrocycles (AM1-11) based on 2,4,6-triaryl pyridine in high yields. The AM1-11 were synthesized by the reaction of diamine compounds (1-11) with 2,6-bis(3-(2-chloroacetamido)phenyl)-4-(phenyl)pyridine (BCP) as a crab-like reagent, in the presence of K2CO3/KI (template reagent). BCP was obtained from the reaction of 2,6-Bis(3-aminophenyl)-4-(phenyl)pyridine (BAP) and chloro acetylchloride at room temperature. Also, BAP was synthesized by using 3-nitro acetophenone and bezaldehyde in the manner of modified Chichibabin reaction and then the reduction of the product by Zn/NH4Cl. The structures of macrocycles were confirmed by IR, 1H NMR, 13C NMR, and Mass spectroscopies.


Main Subjects

[1] Lowe G., Droz A.S., Vilaivan, T., Weaver G.W., Tweedale L., Pratt J.M., Rock P., Yardley V., Croft S. L., Cytotoxicity of (2,2':6',2''-terpyridine)platinum(II) Complexes to Leishmania Donovani, Trypanosoma Cruzi, and Trypanosoma Brucei, J. Med. Chem., 42:999-1006 (1999).
[3] Zhao L.X., Kim T.S., Ahn S.H., Kim T.H., Kim E., Cho W.J., Choi H., Lee C.S., Kim, J.A., Jeong T.C., Chang C., Lee E.S., Synthesis, Topoisomerase I Inhibition and Antitumor Cytotoxicity of 2,2′:6′,2″-, 2,2′:6′,3″- and 2,2′:6′,4″-Terpyridine Derivatives, Bioorg. Med. Chem. Lett., 11:2659-2662 (2001).
[4] Zhao L.X., Moon Y.S., Basnet A., Kim E., Jahng Y., Park J.G., Jeong T.C., Cho W.J., Choi S.U., Lee C.O., Lee S.Y., Lee C.S., Lee E.S., Synthesis, Topoisomerase I Inhibition and Structure-Activity Relationship Study of 2,4,6-Trisubstituted Pyridine Derivatives, Bioorg. Med. Chem. Lett., 14:1333-1337 (2004).
[5] a) Constable E.C., Housecroft C.E., Neuburger M., Phillips D., Raithby P.R., Schofield E., Sparr E., Tocher D.A. Zehnder M., Zimmermann Y. J., Development of Supramolecular Structure Through Alkylation of Pendant Pyridyl Functionality, Chem. Soc. Dalton Trans., 2219-2228 (2000).
b) Flefel E.M., Alsafi M.A., Alahmadi S.M., Amr A.E., Fayed A.A., Antimicrobial Activities of Some Synthesized Macrocyclic Pentaazapyridine and Dipeptide Pyridine Derivatives, Biomedical Research, 29(7): 1407-1413 (2018).
[6] a) Cave G.W.V., Hardie M.J., Roberts B.A., Raston C.L., A Versatile Six-Component Molecular Capsule Based on Benign Synthons − Selective Confinement of a Heterogeneous Molecular Aggregate, Eur. J. Org. Chem., 3227-3231 (2001).
b) Lande D.N., Bhadane S.A., Gejji S.A., Noncovalent Interactions Accompanying Encapsulation of Resorcinol within Azacalix[4]pyridine Macrocycle, Phys. Chem. A, 121(8): 1814–1824 (2017).
[8] Watson Z.C., Baos N., Sanders J.K.M., Mixed Cyclic Trimers of Porphyrins and Dioxoporphyrins: Geometry Vs. Electronics In Ligand Recognition, New J. Chem., 1135-1138 (1998).
[9] Favre-Reguillon A., Segat-Dioury F., Nait-Bouda L., Cosma C., Siaugue J.M., Foos J., Guy A., A Highly Chemoselective Protection and Activation Of Primary Amines in Polyamine, Synlett,  868-870 (2000).
[10] Sessler J.L., Katayev E., Pantos G.D., Scherbakov P., Reshetova M.D., Khrustalev V.N., Lynch V.M., Ustynyuk Y.A., Fine Tuning the Anion Binding Properties of 2,6-Diamidopyridine Dipyrromethane Hybrid Macrocycles, J. Am. Chem. Soc., 127:11442-11446 (2005).
[12] Wessjohann L.A., Ruijter E., Strategies For Total and Diversity-Oriented Synthesis of Natural Product (-like) Macrocycles, Top. Curr. Chem., 243:137-184 (2005).
[13] Comba P., Kuhner A., Peters A., The Figure-of-Eight Twist to Macrocycles: Preorganization, Self-Organization and Dynamics, J. Chem. Soc., Dalton Trans., 509-516 (1999).
[14] Krakowiak K.E., Bradshaw J.S., Izatt R.M., Improved Methods for the Synthesis of Aza-Crown Macrocycles and Cryptands, Synlett, 9:611-620 (1993).
[15] a) Pelissard D., Louis R., Ligands Macrocycliques Pentadendates, Tetrahedron Lett., 45:4589-4592 (1972).
b) Shargi H., Massah A.R., Niknam K., Efficient Synthesis of a Range of Benzosubstituted Macrocyclic Diamides, Iran J. Chem. & Chem. Eng. (IJCCE), 19(1):6-12 (2000).
[16] Ibrahim R., Tsuchiya S., Ogawa S., A Color-Switching Molecule: Specific Properties of New Tetraaza Macrocycle Zinc Complex with a Facile Hydrogen Atom, J. Am. Chem. Soc., 122:12174-12185 (2000).
[17] Cram D. J., Preorganization—From Solvents to Spherands, Angew. Chem., Int. Ed., 25: 1039-1057 (1986).
[18] Shockravi A, Shamsipur M., Fattahi H., Taghdiri M., Heidaryan D., Alizadeh K., Rostami E., Abbaszadeh A., Yousefi A., Efficient Synthesis and Metal Cations Complexation of Some Novel Dinaphthosulfide-Substituted Macrocyclic Diamides, J. Incl. Phenom. Macrocycle. Chem., 61:153-160 (2008).
[19] Shockravi A., Kamali M., Behzadi H., Pahlavan Moghanlo S., Nategholeslam M., Synthesis and Template Studies of New Aza Macrocycles and One Cryptand Based on 2,6-Diaminopyridine and Its Computational NMR Studies Using Density Functional Theory, Lett. Org. Chem., 10:256-262 (2013).
[20] Kamali M., Shockravi A., Mohtasham R., Pahlavan Moghanlo S., Synthesis of New Aza- and Thia-Crown Ethers and Their Metal Ion Templates Synthesis as Model Case Study, ARKIVOC, iv:242-251 (2014).
[21] Shokravi A., Chaloosi M., Zakeri M., Mozaffari E., Rostami E., Abouzari-Lotf  E., The Synthesis and Characterization of Novel Dibenzosulfide Diamine and the Application in the Determination of Heavy Metals, Phosphorus, Sulfur, Silicon and Relat. Elem., 181:2321-2326 (2006).
[22] Mashhadizadeh M.H., Khani H., Shockravi A., Used a New Aza-Thia-Macrocycle as a Suitable Carrier in Potentiometric Sensor of Copper (II), J. Incl. Phenom. Macrocycl. Chem., 68:219-227 (2010).
[23] Shockravi A., Kamali M., Synthesis of New Aza Macrocyclic Diamides 2,2′-diaminodiphenyl Sulfide Using Crab-Like Method, J. Heterocycl. Chem., 49:499-503 (2012).
[24] Nedeltchev A.K., Han H., Bhowmik P.K., Solution, Thermal and Optical Properties of Novel Poly(pyridinium salt)S Derived from Conjugated Pyridine Diamines, J. Poly. Sci., Part A: Poly. Chem., 48(20):4408–4418 (2010).