Kinetic and Reaction Network Determination of Upgrading Process of Lignin-Derived Bio-Oil in the Presence of Hydrogen

Document Type : Research Article

Authors

School of Chemistry, College of Science, University of Tehran, Tehran, I.R. IRAN

Abstract

In this research, upgrading of cyclohexanone as a representative of lignin-derived bio-oil via hydrotreating process catalyzed by Pt/γ-Al2O3 in a fixed-bed tubular reactor is investigated at 573-673 K, 14 bar and space velocity of 3–120 (g of cyclohexanone)/(g of catalyst × h). In order to determine the reaction network and kinetic, the cyclohexanone conversion and products selectivity are evaluated. Data collected at the low conversion of cyclohexanone which quantitatively represents initial product distribution consists of hydrogenation, hydrodeoxygenation, dehydration, and condensation. The highest apparent activation energy is related to the condensation reaction in which the dehydration reaction resulting in phenol formation is assumed to be 17 kJ/mol. Rate constants of formation for the main products decrease as follows: phenol >  2-cyclohexylidenecyclohexan-1-one > 2-methylphenol > cyclohexylbenzene > cyclohexane > biphenyl > 2-cyclohexen-1-one > 2-cyclohexylcyclohexan-1-one > 2-phenylphenol > cyclohexene > 2-cyclohexylphenol.

Keywords

Main Subjects


[1] Saidi M., Samimi F., Karimipourfard D., Nimmanwudipong T., Gates B.C., Rahimpour M.R., Upgrading of Lignin-Derived Bio-Oils by Catalytic Hydrodeoxygenation, Energy & Environmental Science, 7: 103-129 (2014).
[2] میرشکرایی، سید احمد؛ عبدالخانی، علی؛ همزه، یحیی؛ کریمی، علی نقی؛ مقایسه ساختار شیمیایی لیگنین های MWL و EL استخراج شده از چوب صنوبر دلتوئیدس، نشریه شیمی و مهندسی شیمی ایران، (4)30: 67 تا 82 (1390).
[3] صابری خواه، الهام؛ ابراهیمیان پوربازاری، آزاده؛ محمدی روشنده، جمشید؛ مطالعه سینتیک لیگنین زدایی ساقه گندم در فرایند خمیر کاغذسازی با گلیسرول، نشریه شیمی و مهندسی شیمی ایران، (1)34: 51 تا 57 (1394).
[4] یونسی کرد خیلی، حامد ؛ بهروز، ربیع؛ کاظمی نجفی، سعید؛ استفاده از لیگنین کرافت به روش اختلاط حلال در ترکیب ماده مرکب آرد چوب ـ پلی پروپیلن، نشریه شیمی و مهندسی شیمی ایران، (3)30 69 تا 76 (1390).
[5] Venderbosch R.H., Ardiyanti A.R., Wildschut J., Oasmaa A., Heeres H.J., Stabilization of Biomass-Derived Pyrolysis Oils, J. Chem. Technol. Biot., 85: 674-686 (2010).
[6] Busetto L., Fabbri D., Mazzoni R., Salmi M., Torri C., Zanotti V., Application of the Shvo Catalyst in Homogeneous Hydrogenation of Bio-Oil Obtained from Pyrolysis of White Poplar: New Mild Upgrading Conditions, Fuel, 90: 1197-1207 (2011).
[7] Majhi A., Sharma Y.K., Bal R., Behera B., Kumar J., Upgrading of Bio-Oils over PdO/Al2O3 Catalyst and Fractionation, Fuel, 107: 131-137  (2013).
[8] Crossley S., Faria J., Shen M., Resasco D.E., Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface, Science, 327: 68-72 (2010).
[9] Perego C., Bosetti A., Biomass to Fuels: The Role of Zeolite and Mesoporous Materials, Microporous and Mesoporous Materials, 144(1): 28-39 (2011).
[11] Runnebaum R.C., Lobo-Lapidus R.J., Nimmanwudipong T., Block D.E., Gates B.C., Conversion of Anisole Catalyzed by Platinum Supported on Alumina: The Reaction Network, Energ. Fuel., 25: 4776-4785 (2011).
[12] Nimmanwudipong T., Runnebaum R., Block D., Gates B., Catalytic Reactions of Guaiacol: Reaction Network and Evidence of Oxygen Removal in Reactions with Hydrogen, Catal. Lett. 141 (2011) 779-783.
[13] Nimmanwudipong T., Runnebaum R., Tay K., Block D., Gates B., Cyclohexanone Conversion Catalyzed by Pt/γ-Al2O3: Evidence of Oxygen Removal and Coupling Reactions, Catal. Lett. 141: 1072-1078 (2011).
[14] Alvarez F., Magnoux, Ribeiro F.R., Guisnet M., Transformation of Cyclohexanone on PtHZSM5 Catalysts — Reaction Scheme, J. Mol. Catal., 92: 67-79 (1994).
[15] Silva A.I., Alvarez F., Ramôa Ribeiro F., Guisnet M., Synthesis of Cyclohexylcyclohexanone on Bifunctional Pd Faujasites: Influence of the Balance between the Acidity and the Metallic Function, Catal Today., 60: 311-317 (2000).
[16] Olivas A., Samano E.C., Fuentes S., Hydrogenation of Cyclohexanone on Nickel-Tungsten Sulfide Catalysts, Appl. Catal. A-Gen, 220: 279-285 (2001).
[17] Prasomsri T., Nimmanwudipong T., Roman-Leshkov Y., Effective Hydrodeoxygenation of Biomass-Derived Oxygenates into Unsaturated Hydrocarbons by MoO3 Using Low H2 Pressures, Energ. Environ. Sci., 6: 1732-1738 (2013).
[18] Durand R., Geneste P., Moreau C., Pirat J.L., Heterogeneous Hydrodeoxygenation of Ketones and Alcohols on Sulfided NiO-MoO3 / γ−Al2O3 Catalyst, J. Catal., 90: 147-149 (1984).
[19] Maier W.F., Bergmann K., Bleicher W., Schleyer P.v.R, Heterogeneous Deoxygenation of Ketones, Tetrahedron Lett., 22: 4227-4230 (1981).
[20] Shin E.-J., Keane M.A., Gas-Phase Hydrogenation/Hydrogenolysis of Phenol over Supported Nickel Catalysts, Ind. Eng. Chem. Res., 39: 883-892 (2000).
[21] Zhao C., Kou Y., Lemonidou A.A., Li X., Lercher J.A., Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes, Angew. Chem. Int. Edit., 48: 3987-3990 (2009).
[22] Yan N., Yuan Y., Dykeman R., Kou Y., Dyson P.J., Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Brønsted Acidic Ionic Liquids, Angew. Chem. Int. Edit. 49: 5549-5553 (2010).
[23] Şenol O.İ., Ryymin E.M., Viljava T.R., Krause A.O.I., Effect of Hydrogen Sulphide on the Hydrodeoxygenation of Aromatic and Aliphatic Oxygenates on Sulphided Catalysts, J.  Mol. Catal. A-Chem., 277: 107-112 (2007).