Reduction of Aromatic Compounds from Gas Dehydration Unit by Application of Drizo Process

Document Type : Research Article

Authors

Faculty of Chemistry, Campus of Sciences, University of Tehran, Tehran, I.R. IRAN

Abstract

The emission of greenhouse gases, especially aromatic compounds, is a major challenge in the gas industry. In the dehydration process, glycol solvents are used to eliminate water content from the natural gas stream. Farashband gas processing plant consists of six dehydration units that operate by application of stripping gas injection. In this study, the application of Drizo process instead of the conventional process for solvent regeneration is investigated and in order to reduce the BTEX emission and decrease the solvent cost, the use of BTEX absorbed components from the gas stream as a regenerative solvent is suggested. Achieved results indicated that the application of Drizo process decreases the harmful environmental effects and improves the main operating parameters such as dewpoint of dry natural gas, glycol loss, and glycol purity. Also, according to simulation results, by application of Drizo process, the dewpoint of dry natural gas in the summer operating condition reduces from -25 ℃  to -29 ℃  and the glycol loss decreases from 3 kg/h to 2.5 kg/h.

Keywords

Main Subjects


[1] افخمی پور، مرتضی؛ آذین، رضا؛ عصفوری، شهریار؛ مدل سازی جذب انتخابی گاز هیدروژن سولفید توسط محلول متیل دی اتانول آمین در برج جذب پرشده، نشریه شیمی و مهندسی شیمی ایران، (2)31: 27 تا 39 (1391).
[2] فتحی، سهراب؛ عسگری، سامانه؛ قائمی، نگین؛ شریف نیا، شهرام؛ اصلاح جاذب SAPO-34 جهت جداسازی دی اکسید کربن از گاز طبیعی در فشار پایین: بررسی اثر اسیدیته، تبادل یون و نسبت Si/Al ، نشریه شیمی و مهندسی شیمی ایران، (4)37: 121 تا 133 (1396).
[3] Bahadori A., Vuthaluru H. B., Rapid Estimation of Equilibrium Water Dew Point of Natural Gas in TEG Dehydration Systems, J. Nat. Gas Sci. Eng., 1: 68-71 (2009).
[4] Ragunathan T., Xu X., Wood C.D., Gas Phase Dehydration Using Hydrogels, J. Nat. Gas Sci. Eng., 59: 1-8 (2018).
[5] Paymooni K., Rahimpour M.R., Raeissi S., Abbasi M., Saviz M.B., Enhancement in Triethylene Glycol (TEG) Purity via Hydrocarbon Solvent Injection to a TEG + Water System in a Batch Distillation Column, Energy Fuel., 25: 5126-5137 (2011).
[6] Bahadori A., New Model Predicts Solubility in Glycols, Oil Gas J., 105: 50-55 (2007).
[8] Covington K., Lyddon L., Ebeling H., “Reduce Emissions and Operating Costs with Appropriate Glycol Selection”, In Proceedings, Annual Convention-Gas Processors Association, 42-48 (1998).
[9] Chang S.F., Huang T.C., Pearson A.M., Control of the Dehydration Process in Production of Intermediate-Moisture Meat Products: A Review,  Advances in Food and Nutrition Research, 39: 115-161 (1996).
[10] Reid Laurance S., “Goldfinger an Exhauster for Removing Trace Quantities of Water from Glycol Solutions Used for Gas Dehydration”, Ball-Reid Engineers, Inc., Oklahoma City, Oklahoma, 592-602 (1975).
[12] Paymooni K., Rahimpour M.R., Raeissi S., Abbasi M., Saviz M.B., Enhancement in Triethylene Glycol (TEG) Purity via Hydrocarbon Solvent Injection to a TEG + Water System in a Batch Distillation Column, Energy Fuel., 25: 5126-5137 (2011).
[14] Khosravanipour A.M., Rahimpour M.R., Shariati A., Vapor-Liquid Equilibria of Water+Triethylene Glycol (TEG) and Water+TEG+Toluene at 85 kPa, J. Chem. Eng. Data., 54: 876–881 (2009).
[15] Covington K., Lyddon L., Ebeling H., “Reduce Emissions and Operating Costs with Appropriate Glycol Selection”, In Proceedings, Annual Convention-Gas Processors Association, 42-48 (1998).