Investigation Effects of Phosphate Salt in the Extraction of Malic Acid Using Aqueous Two-Phase Systems

Document Type : Research Article

Authors

Department of Chemical Engineering, University of Guilan, Rasht, I.R. IRAN

Abstract

Novel separation methods that are necessary for the purification of biomolecules and carboxylic acids at industries, are expanding. Therefore, these methods should be fast, selective, and easy to scale up. The aqueous two-phase system is an effective separation procedure for the purification of materials. The purification of biomolecules and carboxylic acids is extremely selective by this method and also, the separation process is conducted in one step. This research aimed to investigate the effects of molecular weight of polyethylene glycol, pH, salt concentration, and salt type in polymer/salt aqueous two-phase systems. In this research, purification of malic acid in aqueous two-phase systems containing polyethylene glycol 4000 and 8000 g/mol, different concentration sodium di hydrogen phosphate, diammonium hydrogen phosphate, and di potassium hydrogen phosphate were studied. After investigating the effective factors, the best operation conditions for malic acid extraction was obtained in a system composed of  PEG4000, 0.25 (w/w) sodium di hydrogen phosphate at pH=5. The purification parameters such as partition coefficient of malic acid and yield were achieved 0.85 and 80%, respectively.

Keywords

Main Subjects


[1] Uslu H., Kırbaşlar Ş.İ., Extraction of Aqueous of Malic Acid by Trioctylamine Extractant in Various Diluents. Fluid Phase Equilibria, 287(2): 134-140 (2010).
[2] Dilley D.R., Purification and Properties of Apple Fruit Malic Enzyme, Plant Physiology, 41(2): 214-220 (1966).
[3] Chi Z., Wang Z., Wang G., Khan I., Chi Z., Microbial Biosynthesis and Secretion of L-Malic Acid and Its Applications, Critical Reviews in Biotechnology, 36(1): 99-107 (2016).
[4] Zeikus J., Jain M., Elankovan P., Biotechnology of Succinic Acid Production and Markets for Derived Industrial Products, Applied Microbiology and Biotechnology, 51(5): 545-552 (1999).
[5] Mondala A.H., Direct Fungal Fermentation of Lignocellulosic Biomass into Itaconic, Fumaric, and Malic Acids: Current and Future Prospects, Journal of Industrial Microbiology & Biotechnology, 42(4): 487-506 (2015).
[6] Uslu H., Kırbaşlar S.I.S., Purification of L-Malic Acid from Aqueous Solution by a Method of Reactive Extraction, Journal of Chemical & Engineering Data, 54(10): 2819-2826 (2009).
[7] Khayati G., Gilani H.G., Safari Keyvani Z., Extraction of Cu(II) Ions from Aqueous Media Using PEG/Sulphate Salt Aqueous Two-Phase System, Separation Science and Technology, 51(4): 601-608 (2016).
[8] Diamond A., Hsu J., "Aqueous Two-Phase Systems for Biomolecule Separation, in Bioseparation". Springer. p. 89-135 (1992).
[9] Dobry A. Boyer‐Kawenoki F., Phase Separation in Polymer Solution, Journal of Polymer Science, 2(1): 90-100 (1947).
[10] مدرس ح.، الیاسی ع.، ایلی م.، جدایی آلفا آمیلاز و سرم آلبومین گاوی در سیستم‌ های دو فازی پلی اتیلن گلیکول و نمک‌ های فسفات در آب. نشریه شیمی و مهندسی شیمی ایران، (2)25: 17 تا 29 (1385)
[11] Albertsson P.-Å., Cajarville A., Brooks D., Tjerneld F., Partition of Proteins in Aqueous Polymer Two-Phase Systems and the Effect of Molecular Weight of the Polymer, Biochimica Et Biophysica Acta (BBA)-General Subjects, 926(1): 87-93 (1987).
[12] Albertsson P.-Å., Separation of Particles and Macromolecules by Phase Partition. Endeavour, 1(2): 69-74 (1977).
[13] Albertsson P.-Å., "Partition of Cell Particles and Macromolecules in Polymer Two-Phase Systems, in Advances in Protein Chemistry"., Elsevier. p. 309-341 (1970).
[14] Malmary G., Vezier A., Robert A., Molinier J., Mourgues J., Conte T., Recovery of Tartaric and Malic Acids from Dilute Aqueous Effluents by Solvent Extraction Technique, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 60(1): 67-71 (1994).
[15] Gao Q., Pan C., Liu F., Lu F., Wang D., Zhang J., Zhu Y., Adsorption Characteristics of Malic Acid from Aqueous Solutions by Weakly Basic Ion-Exchange Chromatography. Journal of Chromatography A, 1251: 148-153 (2012).
[16] Gök A., Gök M., Aşçı Y., Lalikoglu M., Equilibrium, Kinetics And Thermodynamic Studies for Separation of Malic Acid on Layered Double Hydroxide (LDH). Fluid Phase Equilibria, 372: 15-20 (2014).
[17] Walter H., Johansson G., Brooks D.E., Partitioning in Aqueous Two-Phase Systems: Recent Results, Analytical Biochemistry, 197(1): 1-18 (1991).
[18] Zaslavsky B.Y., Bioanalytical Applications of Partitioning in Aqueous Polymer Two-Phase Systems. Analytical Chemistry, 64(15): 765A-773A (1992).
[19] Khayati G., Optimization of Propionic Acid Extraction by Aqueous Two-Phase System Using Response Surface Methodology, Chemical Engineering Communications, 200(5): 667-677 (2013).
[20] قنادزاده گیلانی ح.، جنگجوی شالدهی ط.،  معصومی ح.، بررسی پارامترهای مؤثر بر استخراج آسکوربیک اسید به کمک نمک‌های سولفات و پلی اتیلن گلیکول در سامانه­‌های دوفازی آبی. نشریه شیمی و مهندسی شیمی ایران،  (3)39: 163 تا 170 (1399)
[21] یزدان بخش م.، اشرف تالش س.، خیاطی غ.، قنادزاده گیلانی ح.، "بررسی اثر نمک های سولفات در استخراج اسید پروپیونیک با استفاده از سیستم های دو فازی آبی"،  دانشگاه گیلان) 1392.(
[22] Wongmongkol N.,  Prichanont S., Partition of Alkaline Protease in Aqueous Two-Phase Systems of Polyethylene Glycol 1000 and Potassium Phosphate, Korean Journal of Chemical Engineering, 23(1): 71-76 (2006).
[24] Marcos J.C., Fonseca L.P., Ramalho M.T., Cabral J.M.S., Partial Purification of Penicillin Acylase from Escherichia coli in Poly (ethylene glycol)–Sodium Citrate Aqueous Two-Phase Systems. Journal of Chromatography B: Biomedical Sciences and Applications, 734(1): 15-22 (1999).
[25] Öztürk B., "Immobilization of Lipase from Candida Rugosa on Hydrophobic and Hydrophilic Supports”, İzmir Institute of Technology (2001).
[26] Nandini K., Rastogi N., Liquid-Liquid Extraction of Lipase Using Aqueous Two-Phase System, Food and Bioprocess Technology, 4(2): 295-303 (2011).
[27] Marcus Y., Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions, 87(18): 2995-2999 (1991).