Synthesis of ThioporpholineDerivatives via Multicomponent Reaction of Terminal Alkynes, Isothiocyanates, and Aziridines

Document Type : Research Article

Authors

Young Research and Elite Club, Buin Zahra Branch, Islamic Azad University, Buin Zahra, Iran

Abstract

Copper acetylide was reacted with isothiocyanates and aziridines to form 1,4-thiomorpholine derivatives. Reaction outcome depends highly on the reaction conditions and the particular solvent employed. Optimum conditions are developed using copper triflate in DMSOat70 ˚C. Both the alkyl- and aryl- substituted aziridines and terminal alkynes were tolerated. Variation on isothiocyanates structure did not affect the reaction efficiency in an appreciable manner.Oxirane derivatives exhibited lower reactivity than that aziridines. Alkyl aziridines afforded terminal-attacked products while phenyl aziridines gave benzylic-attacked products.Aziridines derived from cyclopentene did not participate in this transformation.

Keywords

Main Subjects


[1] طیبه خانلری، تهیه پلیمر حمایت کننده پالادیوم بر پایه پلی­وینیل الکل و استفاده از آن در واکنش هک،نشریه شیمی و مهندسی شیمی ایران، (2)34: 25 تا 40 (1394).
[2] امینی، مجتبی؛ بهرامی حیدرلو، دینا؛ باقرزاده، مجتبی؛ نانوذره­های پالادیم تثبیت شده بر روی بستر روی اکسید به ­عنوان کاتالیستی مؤثر در واکنش جفت شدن هک، نشریه شیمی و مهندسی شیمی ایران، (2)35: 21تا 29 (1395).
[3] Marset X., Khoshnood A., Sotorríos L., Gómez-Bengoa E., Alonso D. A., Ramón D. J., Deep Eutectic Solvent Compatible Metallic Catalysts: Cationic Pyridiniophosphine Ligands
in Palladium-Catalyzed  Cross-Coupling Reactions
, Chem. Cat. Chem.,9: 1269-1275 (2017).
[4] Sandfort F., O'Neill M.J., Cornella J., Wimmer L., Baran P.S., Alkyl−(Hetero)Aryl Bond Formation via Decarboxylative Cross-Coupling: A Systematic Analysis, Angew. Chem. Int. Ed., 56: 3319-3323 (2017).
[6]  Samzadeh-Kermani A., Heteropolyacid-Catalyzed One-Pot Synthesis of 2-Pyridone Derivatives, Synlett, 27: 461-464 (2016).
[8] Khalaj M., Ghazanfarpour-Darjani M., TaleiBavilOlyai M.R., FarajiShamami S., Palladium Nanoparticles as Reusable Catalyst for the Synthesis of N-Aryl Sulfonamides Under Mild Reaction Conditions, Journal of Sulfur Chemistry., 37: 211-222 (2016).
[10] Lu P., Wang Y., The Thriving Chemistry of Ketenimines, Chem. Soc. Rev.,41: 5687-5705 (2012).
[11] Chauhan D.P., Varma S.J., Vijeta A., Banerjee P., Talukdar P., A 1,3-Amino Group Migration Route to form Acrylamidines, Chem. Commun., 50: 323-325 (2014).
[12] Yavari I., Ghazanfarpour-Darjani M., NematpourM.,Copper-catalyzed Tandem Synthesis of 2-(sulfonylimino)alkanamides from N-Sulfonylketenimines and Alkyl Isocyanides, Tetrahedron Let., 56: 2416-2417 (2015).
[13] Anand N.K., Carreira E.M., A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes, J. Am. Chem. Soc., 123: 9687-9688 (2001).
[15] Frantz D.E., Fassler R., Carreira E.M., FacileEnantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes, J. Am. Chem. Soc.,122: 1806-1807 (2000).
[16] Frantz D. E., Fassler R., Carreira E. M., Catalytic in Situ Generation of Zn(II)-Alkynilides under Mild Conditions: A Novel CN Addition Process Utilizing Terminal Acetylenes, J. Am. Chem. Soc.,121: 11245-11246 (1999).
[17] Knöpfel T. F., Carreira E. M., The First ConjugateAddition Reaction of Terminal Alkynes Catalytic in Copper: Conjugate Addition of Alkynes in Water, J. Am. Chem. Soc.,125: 6054-6055 (2003).
[18] Corey E. J., Beames D. J., Mixedcuprate Reagents of Type R1R2CuLi which Allow Selective Group Transfer, J. Am. Chem. Soc.,94: 7210-7211 (1972).
[19] Rueping M., Antonchick A.P., BrinkmannC., Dual Catalysis: A Combined EnantioselectiveBrønsted Acid and Metal‐Catalyzed Reaction—Metal Catalysis with Chiral Counterions, Angew. Chem. Int. Ed., 46: 6903–6906 (2007).
[20] Ghazanfarpour-Darjani M., Babapour-Kooshalshahi M., Mousavi-Safavi S.M., Akbari-Neyestani J., Khalaj M., Copper-Catalyzed Domino Addition–Cyclization Reaction between Terminal Alkynes, Carbon Disulfide, and Oxiranes, Synlett.,27: 259-261 (2016).
[21] Samzadeh-Kermani A., Silver Salt Catalyzed Synthesis of 1,4-oxathian-3-imine Derivatives, Tetrahedron.,72: 5301-5304 (2016).
[22] Han B, Liu J.L, Huan Y, Li P, Wu Q, LinZ.Y, Shen Z.F, Yin D.L, Huang H.H., Design, Synthesis and Primary Activity of Thiomorpholine Derivatives as DPP-IV Inhibitors, Chinese Chemical Letters.,23:297–300(2012).
[23] Králová P., Fülöpová V., Maloň M.,VolnáT., PopaI, Soural M., Stereoselective Polymer-Supported Synthesis of Morpholine and Thiomorpholine-3-Carboxylic Acid Derivatives, ACS Comb. Sci., 19:173–180 (2017).
[24] Moss M.L, Sklair-Tavron L, Nudelman R., DrugInsight: Tumor Necrosis Factor-Converting Enzyme as a Pharmaceutical Target for Rheumatoid Arthritis, Nat. Clin. Prac.t Rheum., 4:300-309(2008).
[25] Ando T., Kano D., Minakata S., Ryu I., Komatsu M., Iodine-Catalyzed Aziridination of Alkenes Using Chloramine-T as a Nitrogen Source, Tetrahedron., 54: 13485-13494 (1998).