Development of Chromium (III) Potentiometric Sensor by Using 2-Benzamidopropanoic Acid

Document Type : Research Article

Authors

Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

In this study, a selective and sensitive ion-selective liquid membrane electrode based on 2-benzamidopropanoic acid to the determination of chromium (III) was prepared. This electrode exhibits a Nernstian response for chromium (III) ions over a concentration range (0.3´10-1 to 1.0´10-5 mol/L) with a slope of 22.3 mV per decade. The limit of detection of the electrode was 8.0×10-6 mol/L. The sensor has a relatively fast response time (<10 s) and a useful working pH range of 3.5–8.0. Interference of some cations was also evaluated. The practical utility of the chromium (III) ion sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of chromium (III) with EDTA and for direct determination of chromium (III) in tea and cacao powder samples. Finally, the effect of ionic liquid of 1-Methyl-3-Pentylimidazolium bromide as an ionic additive was investigated.

Keywords

Main Subjects


[2] Kiran B., Rani N., Anubha K., Environmental Toxicity: Exposure and Impact of Chromium on Cyanobacterial Species, J. Environ. Chem. Eng., Part A, 4(4): 4137-4142 (2016).  
[3] Lukina A.O., Boutin C., Rowland O., Carpenter D.J., Evaluating Trivalent Chromium Toxicity on Wild Terrestrial and Wetland Plants, Chemosphere, 162: 355-364 (2016).
[4] Hamilton E.M., Young S.D., Bailey E.H., Watts M.J., Chromium Speciation in Foodstuffs: A Review, Food Chem., 250: 105-112 (2018).
[5] Biswas P., Kumar Karn A., Balasubramanian P., Kale P.G., Biosensor for Detection of Dissolved Chromium in Potable Water: A Review, Biosens. Bioelectron., 94: 589-604 (2017).
[6] عبدالشاهی نژاد، سارا؛ برقعی، سید مهدی؛ سیدی، مجتبی، حذف کروم شش ظرفیتی توسط نانو ذره های فریت، نشریه شیمی و مهندسی شیمی ایران، (1)34: 29 تا 37 (1394).
[7] عیدی­زاده، منا؛ آذری، احمد، بهینه سازی پارامترهای جذب همزمان کروم(III) و مس (II) از پساب به وسیله کیتوزان با استفاده از طراحی آزمایش تاگوچی، نشریه شیمی و مهندسی شیمی ایران، (3)36: 115 تا 124 (1396).
[8] Shahid M., Shamshad S., Rafiq M., Khalid S., Bibi I., Khan Niazi N., Dumat C., Rashid M.I., Chromium Speciation, Bioavailability, Uptake, Toxicity and Detoxification in Soil-plant System: A Review, Chemosphere, 178: 513-533 (2017).
[9] Markiewicz B., Komorowicz I., Sajnóg A., Belter M., Barałkiewicz D., Chromium and Its Speciation in Water Samples by HPLC/ICP-MS – Technique Establishing Metrological Traceability: A Review Since 2000, Talanta, 132: 814-828 (2015).
[10] Hajiaghababaei L., Takalou S., Adhami F., High-Sensitive and Selective Liquid Membrane Electrode for Direct Determination of Trace Amounts of Chromium, J. Appl. Chem. Research, 10(3): 73-84 (2016).
[11] Mehdipour S.Z., Shokrzadeh M., Khanzadi S., Shahsavani D., Effects of Cooking Methods on the Concentrations of Lead, Chromium and Cadmium in Whitefish (Rutilus frissi kutum) from the Caspian Sea, Iran, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 141-147 (2018).
[12] رفیعی، حمیدرضا؛ شیروانی، مهران؛ کاربرد کامپوزیت پلی اکریلیک اسید/ بنتونیت برای جذب کروم از محلول های آبی،  نشریه شیمی و مهندسی شیمی ایران، (2)84: 139 تا 127 (1396).
[13] Edebali S., Comparison of Chitosan-Based Biocomposites for Remediation of Water with Cr(VI) Ions, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 245-251 (2020).
[14] Gunaranta P.C., Koch W.F., Paule R.C., Cormier A.D., D,Orazio P., Greenberg N., O,Connel K.M.O., Malenfant A., Okordodudu A., Miller R., Frozen Human Serum Reference Material for Standardization of Sodium and Potassium Measurements in Serum or Plasma by Ion-Selective Electrode Analyzers,  Clin. Chem., 38: 1459-1465 (1992).
[15] Hajiaghababaei L., Abutalebyar B., Darvich M.R., Shekoftefar S., Synthesis of a New Oxime to the Construction of a Mercury Potentiometric Sensor, Sensor Lett., 11: 2315-2321 (2013).
[16] Hajiaghababaei L., Sharafi A., Suzangarzadeh S., Faridbod F., Mercury Recognition: A Potentiometric Membrane Sensor Based on 4-(Benzylidene amino)-3,4-dihydro-6-methyl-3-thioxo-1,2,4-triazin-5(2H)one, Anal. Bioanal. Electrochem., 5: 481-493 (2013).
[17] Ganjali M.R., Hajiaghababaei L., Taghvaei-Ganjali L., A New Cone Shaped Asymmetrically Substituted Calix[4]arene as an Excellent Ionophore in Construction of Ag(I) Ion-Selective Membrane Electrode, Bull. Korean Chem. Soc., 25: 177-181 (2004).
[18] Ganjali M.R., Norouzi P., Atrian A., Faridbod F., Meghdadi S., Giahi M., Neutral N,N′-bis(2-pyridinecarboxamide)-1,2-ethane as Sensing Material for Determination of Lutetium(III) Ions in Biological and Environmental Samples, Mater. Sci. Eng. C., 29: 205-210 (2009).
[20] Cesarino I., Marino G., Matos J.R., Cavalheiro E.T.G., Quím E., Evaluation of a Carbon Paste Electrode Modified with Organo Functionalized SBA-15 Silica in the Determination of Copper, Eclética Química, 32: 29-34 (2007).
[21] Balaji T., Sasidharan M., Matsunaga H., Naked Eye Detection of Cadmium Using Inorganic-Organic Hybrid Mesoporous Material, Anal. Bioanal. Chem., 384: 488-494 (2006).
[22] Ensafi A.A., Meghdadi S., Allafchian A.R., Highly Selective Potentiometric Membrane Sensor for Hg(II) Based on Bis(benzoyl acetone) Diethylene Triamine, Sens. J. IEEE, 8: 248-254 (2008).
[23] Gupta V.K., Jain S., Khurana U., A PVC‐based Pentathia‐15‐crown‐5 Membrane Potentiometric Sensor for Mercury (II), Electroanalysis, 9: 478-480 (1997).
[25] Hajiaghababaei L., Kazemi S., Badiei A., Using the Hydroxymethyl-Modified Nanoporous Silica as a PVC Membrane Electrode Modifier to Determination of Lead Ions, Anal. Bioanal. Electrochem., 4: 246-261 (2012).
[26] Ganjali M.R., Zamani H.A., Norouzi P., Adib M., Accedy M., Novel Calcium Sensor Based on [2-(2-Hydroxyphenyl)imino]-1,2-diphenylethanone, Acta. Chim. Slov., 52: 309-316 (2005).
[30] Gupta V.K., Singh A.K., Al Khayat M., Gupta B., Neutral Carriers Based Polymeric Membrane Electrodes for Selective Determination of Mercury (II), Anal. Chim. Acta., 590: 81-90 (2007).
[31] Jeong D-Ch., Lee H.K., Jeon S., Polymeric Iodide-ion Selective Electrodes Based on Urea Derivative as an Ionophore, Bull. Korean Chem. Soc., 27: 1985-1988 (2006).
[33] Simon J.F., Bouillez A., Frère J-M., Luxen A., Zervosen A., Synthesis of an Enantiopure thioester as Key Substrate for Screening the Sensitivity of Penicillin Binding Proteins to Inhibitors, ARKIVOC, 22-31(2016) (v).
[34] Wasserscheid P., Welton T., (Eds.), "Ionic Liquids in Synthesis", John Wiley & Sons, Inc., Weinheim, (2003).
[36] Yavari I., Shahvelayati A.S., Ghanbari M., Ghazvini M., Piltan M., One-pot Synthesis of Functionalized α-Acyloxythioamides from N-Protected a-Amino Acids as an Acid Component in the Passerini Reaction in an Ionic Liquid, J. Iran. Chem. Soc., 8: 636-642 (2011).
[38] Vygodskii Y.S., Lozinskaya E.I., Shaplov A.S., Ionic Liquids as Novel Reaction Media for the Synthesis of Condensation Polymers, Macromol. Rapid Commun., 23: 676-680 (2002).
[39] Bakker E., Bühlmann P., Pretsch E., Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics, Chem. Rev., 97: 3083 (1997).
[40] Bakker E., Meyerhoff M.E., Ionophore-based Membrane Electrodes: New Analytical Concepts and Non-Classical Response Mechanisms, Anal. Chim. Acta., 416:121-137 (2000).
[41] Faridbod F., Khamseh-Nejad M., Ganjali M.R., Norouzi P., Hajiaghababaei L., Cetrimide Potentiometric PVC Membrane Sensor, Int. J. Electrochem. Sci., 7: 1917-1926 (2012).
[42] Rosatzin T., Bakker E., Suzuki K., Simon W., Lipophilic and Immobilized Anionic Additives in Solvent Polymeric Membranes of Cation-selective Sensors, Anal. Chim. Acta., 280: 197-208 (1993).
[44] Gehrig P.M., Morf W.E., Pretsch E., Catalysis of Ion Transfer by Tetraphenylborates in Neutral Carrier-Based Ion-selective Electrodes, Anal. Chim. Acta., 73: 203-212 (1990).
[45] Ganjali M.R., Norouzi P., Rezapour M., "Encyclopedia of Sensors, Potentiometric Ion Sensors", American Scientific Publisher (ASP), Los Angeles, 8: 197-288 (2006).
[48] Gholivand M.B., Sharifpour F., Chromium(III) Ion-Selective Electrode Based on Glyoxal bis(2-hydroxyanil), Talanta, 60: 707-713 (2003).
[49] Gupta V.K., Jain A.K., Kumar P., Agarwal S., Maheshwari G., Chromium(III)-selective Sensor Based on Tri-o-thymotide in PVC Matrix, Sens. Actuator. B, 113: 182–186 (2006).
[50] Singh A.K., Panwar A., Kumar Sh., Baniwal S., Chromium(III)-selective Electrode Based on a Macrocyclic Compound, Analyst, 124: 521–525 (1999).
[51] Abu-Shawish H.M., Saadeh S.M., Hartani K., Dallul H.M., A Comparative Study of  Chromium (III) Ion-selective Electrodes Based on N,N-bis(salicylidene)-o-phenylene diaminate Chromium(III), J. Iran. Chem. Soc., 6(4): 729-737 (2009).
[52] Abbaspour A., Izadyar A., Chromium (III) Ion-selective Electrode Based on 4-dimethylaminoazobenzene, Talanta, 53: 1009–1013 (2001).
[53] Ganjali M.R., Mizani F., Salavati-Niasary M., Javanbakht M., Novel Potentiometric Membrane Sensor for the Determination of Trace Amounts of Chromium (III) Ions, Anal. Sci., 19: 235-238 (2003).
[54] Kumar P., Sharma H.K., Shalaan K.G., Development of Chromium (III) Selective Potentiometric Sensor by Using Synthesized Triazole Derivative as an Ionophore, J. Chem., Article ID 142752, 6 Pages (2013).