Comparative study on degradation of cationic and anionic dyes using TiO2-Graphene/Alginate nanocomposite

Document Type : Research Article

Author

Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

Abstract

In this research work, TiO2, TiO2-Graphene, and TiO2-Graphene/Alginate catalysts were synthesized and characterized by different methods such as XRD, TEM, SEM, and EDX analysis methods. Photocatalytic activity of prepared samples was investigated by photocatalytic removal of malachite green and methyl orange as cationic and anionic dyes from aqouse solutions. The results showed that photocatalytic activity of samples depends on the chemical structure of pollutants. TiO2-Graphene/Alginate nanocomposite showed higher photocatalytic activity on the removal of cationic dye from aqouse solutions. While TiO2-Graphene sample showed higher photocatalytic activity on the removal of anionic dye from aqouse solutions comparison. The figures of merit based on electric energy consumption (electrical energy per order (EEO)) were evaluated in the photodegradation of malachite green in the presence of prepared samples. The results indicate that less energy is consumed during the degradation of malachite green in the presence of TiO2-Graphene/Alginate compared with other photocatalysts. To understand the nature of adsorption process, the equilibrium adsorption isotherms were studied. Based on results, for TiO2-Graphene/Alginate , Langmuir isotherm model with correlation coefficient of 0.995 fitted the experimental data, respectively. According to the Langmuir isotherm model, the maximum adsorption capacity of TiO2-Graphene/Alginate for adsorption malachite green was about 86.45 mg. g^(-1), which was about 4 times the adsorption capacity of Ag-TiO2. Also, recyclability of TiO2-Graphene/Alginate nanocomposite was investigated. The results showed that TiO2-Graphene/Alginate nanocomposite with recycling ability is highly stable.

Keywords

Main Subjects


[2] مثمری، حمید؛ علایی، ابراهیم؛ شوندی، محمود؛ دستغیب، سید محمدمهدی؛ تشرفی، سعیده؛ پاک سازی آب زیرزمینی آلوده به بنزن به روش فنتون اصلاح شده، نشریهشیمیومهندسیشیمی ایران، 37: 149 تا 159 (1397).
[4] Sampaio M.J., Silva C.G., Silva A.M.T., Pastrana-Martínez L.M., Han C., Carbon-Based TiO2 Materials for the Degradation of Microcystin-LA, Appl. Catal. B: Environment., 170: 74-82 (2015).
[6] Liu D.,Huang P.,  Liu Y.,   Wu Z.,  Li D.,  Guo J.,  Wu T., Cd/In-Co doped TiO2 Nanochips for High-Efficiency Photocatalytic Dye Degradation, Dalton Trans., 47:  6177-6183 (2018). 
[7] Ahmari H., Heris S.Z., Khayyat M.H., The Effect of Titanium Dioxide Nanoparticles and UV Irradiation on Photocatalytic Degradation of Imidaclopride, Environ. Technol., 39: 536-547 (2018). 
[8] Tang, J., Chen, Q., Xu, L., Zhang, S., Feng, L., Cheng, L., Peng, R., Graphene Oxide–Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms, ACS. Appl. Mater. Interfaces., 5: 3867-3874 (2013).
[9] Liang Y.T., Vijayan B.K., Gray K.A., Hersam M.C., Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production, Nano. Lett., 11: 2865–2870 (2011).
[10] Jiang G., Lin Z., Chen C., Zhu L., Chang Q., Wang N., Wei W., Tang H., TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants, Carbon., 49: 2693–2701 (2011).
[11] پازکی، مریم؛ قاسم زاده، رضا؛  یاوری، محمد؛ عبدلی، محمدعلی؛ بررسی عملکرد نانوذره تیتانیوم دی اکسیدنقره دوپ (Ag/ TiO2) در تخذیب فتوکاتالیستی اریترومایسین، نشریه   شیمی و مهندسی شیمی ایران، 37: 63 تا 72 (1397).
[12] Yang Y.C., Huang W.Q., Xu L., Hu W., Peng P., Huang G.F., Hybrid TiO2/Graphene Derivatives Nanocomposites: Is Functionalized Graphene Better Than Pristine Graphene for Enhanced Photocatalytic Activity? Catal. Sci. Technol., 7: 1423-1432 (2017).
[13] محمدی، رباب؛ معصومی، بخشعلی ؛ تهیه و شناسایی نانو ذره های Ag/Zn-TiO2 با روش­های گوناگون و بررسی تأثیر روش تهیه بر روی فعالیت کاتالیزگری نوری نانو ذره های Ag/Zn-TiO2،  نشریه شیمی و مهندسی شیمیایران،35: 9 تا 20 (1395).
[14]Yang Sh., Wua Y., Aierken A., Zhang M., Fang P., Fan Y., Ming Z., Mono/Competitive Adsorption of Arsenic(III) and Nickel(II) Using Modified Green Tea Waste, J. Taiwan. Inst. Chem. Eng. ,000: 1–9 (2016).
[15] طهمورسی، مجید ؛ صرافی، امیر ؛ ایرج منصوری، عبدالرضا؛ جذب یون های مس، روی و نیکل توسط بنتونیت کلسیمی، نشریه  شیمیومهندسیشیمیایران،32: 7 تا 16 (1392).
[17] Wang X., Wu P., Huang Z., Zhu N., Wu J., Li P., Dang Z., Solar Photocatalytic Degradation of Methylene Blue by Mixed Metal Oxide Catalysts Derived from Zn Al Ti Layered Double hydroxides, Appl Clay Sci., 95: 95–103 (2014).
[18] Nagarjuna R., Roy S., Ganesan R., Polymerizable Sol-Gel Precursor Mediated Synthesis of TiO2 Supported Zeolite-4A and its Photodegradation of Methylene Blue, Micropor. Mesopor. Mater., 211: 1–8 (2015).
[21] Deepachitra, R., Ramnath, V., Sastry, T. P., Graphene Oxide Incorporated Collagen–Fibrin Biofilm as a Wound Dressing Material, RSC. Adv., 4: 62717-62727 (2014).
[24] Ngamta S., Boonprakob N., Wetchakun N., Ounnunkad K., Phanichphant S., Inceesungvorn B., A Facile Synthesis of Nanocrystalline Anatase TiO2 from TiOSO4 Aqueous Solution, Mater. Lett., 105: 76–79 (2013).
[25] Nenavathu B. P., Kandula S., Verma S., Visible-light-Driven Photocatalytic Degradation of Safranin-T Dye Using Functionalized Graphene Oxide Nanosheet (FGS)/ZnO Nanocomposites, RSC Adv., 8: 19659-19668 (2018).
[26] Tang S., Wang Z., Li P., Li W., Li C., Wang Y., Chu P. K., Degradable and Photocatalytic Antibacterial Au-TiO2/Sodium Alginate Nanocomposite Films for Active Food Packaging, Nanomaterials., 8: (2018) 1-11.
[27] Liu S., Sun H., Liu S., Wang S., Graphene Facilitated Visible Light Photodegradation of Methylene Blue over Titaniumdioxide Photocatalysts, Chem. Eng. J.  214:  298–303 (2012).
[28]Shu Z., Bolton J.R., Belosevic M., El Din M.G., Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process, Water Res.,47: 2881-2889 (2013).
[29] محمدی، رباب؛ معصومی، بخشعلی؛ صادقی، وحیده؛  بررسی میزان جذب سطحی متیل اورانژ با استفاده از نانوکامپوزیت Ag-TiO2/GO، نشریهشیمیومهندسیشیمی ایران، 37: 113 تا 124 (1397).
 [31] اهالی آباده، زهرا؛ایران نژاد، مهدی؛ بررسی مدل­های سینتیکی و همدمایی حذف کادمیم از محلول­های آبی با کامپوزیت زئولیتی آهنی، نشریهشیمیومهندسیشیمی ایران، 35: 99 تا 111 (1395).
[32] Fan L., Luo C., Sun M., Li X., Qiu H., Highly Selective Adsorption of Lead Ions by Water-Dispersible Magnetic Chitosan/Graphene Oxide Nanocomposites, Coll. Surf. B., 103: 523–529 (2013).
[33] Mohammadi M., Sedighi M., Alimohammadi V., Modeling and Optimization of Nitrate and Total Iron Removal from Wastewater by TiO2 /SiO2 nanocomposites, Int. J. Nano Dimens., 10:  195-208 (2019).
[34] Zhang N., Xu Y. J.,  The Endeavour to Advance Graphene–Semiconductor Composite-Based Photocatalysis, Cryst. Eng. Comm., 18: 24-37 (2016).