Synthesis and Characterization of TiO2-Beta Heterogeneous Nanocomposites and its Kinetic Effect onto Congo-red Photocatalytic Degradation Process

Document Type : Research Article


1 Department of Chemistry, East Tehran Branch,, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN


Abstract: In this study, zeolite Beta was used to prepare the TiO2-Beta binary composite. Different ratios of these two components nanocomposite were prepared, and the optimal weight ratio, including 70% TiO2 and 30% Beta zeolite was applied respectively. The prepared nanocomposite was characterized using the methods including FT-IR, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction (XRD). The photocatalytic degradation of Congo-red under UV light assessed with the prepared TiO2-Beta nanocomposites. The results revealed that the nanocomposite with a weight percentage of TiO2/Beta 70 to 30 exhibited higher photocatalytic degradation than that of 50%. Besides, the synthesized nanocomposite had a higher photocatalysis performance than that of TiO2 nanoparticles. The role of pH and loading of TiO2/Beta nanocomposite with a weight ratio of 70:30 investigated on the Congo-red degradation. The results showed that the highest Congo-red degradation efficiency achieved in the range of pH 4.6 to 4.6, and it increased to a maximum value by raising the amount of nanocomposite to a value that reaches the limit concentration of 1.2 gr/L. In addition, the effect of the Congo-red initial concentration on the kinetic constant evaluation of photodegradation by TiO2/Beta nanocomposite with a weight percent of 70:30, indicated that the degradation process can be described using Langmuir-Hinshelwood kinetic model, and the estimation of apparent rate constants with respect to different concentrations of the Congo-red based on the first-order kinetic model, showed that the apparent rate constant of the Congo-red degradation reduced by increasing its initial concentration. Furthermore, the ability to recover the TiO2/Beta nanocomposite indicated that after four consecutive use of nano photocatalyst, the degradation efficiency decreased only about 5 %.


Main Subjects

[1] Molinari R., Pirillo F., Falco M., Loddo V., Palmisano L., Photocatalytic Degradation of Dyes by Using a Membrane Reactor, Chem. Eng. Process, 43(9): 1103-1114 (2004).
[2] Konstantinou I.K., Albanis T.A., TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review, Applied Catalysis B: Environmental, 49: 1-14 (2004).
[3] Guillard C., Lachheb H., Houas A., Ksibi M|., Elaloui E., Herrmann  J.M., Influence of Chemical Structure of Dyes, of pH and of Inorganic Salts on their Photocatalytic Degradation by TiO2 Comparison of the Efficiency of Powder and Supported TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 158(1): 27-36 (2003).
[4] Augugliaro V., Baiocchi C., Prevot A.B., Lopez E.G., Loddo V., Malato S., Marci G., Palmisano L., Pazzi M., Pramauro E., Azo-Dyes Photocatalytic Degradation in Aqueous Suspension of TiO2 under Solar Irradiation, Chemosphere, 49(10): 1223-1230 (2002).
[5] قنادزاده گیلانی، حسین؛ قنادزاده گیلانی، علی؛ آزمون، پریسا؛ بررسی جذی فنل از محلول­ های آبی با استفاده از کربن هسته انار، نشریه شیمی و مهندسی شیمی ایران، (4)36: 145 تا 159 (1396).
[6] Ibhadon A.O., Fitzpatrick P., Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, 3: 189-218 (2013).
[7] Gaya U.I., Abdullah A.H., Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9: 1-12 (2008).
[8] Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K., A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production, Renewable and Sustainable Energy Reviews, 11(3): 401-425 (2007).
[9] Senic Z., Bauk S., Vitorovic-Todorovic M., Application of TiO2 Nanoparticles for Obtaining Self- Decontaminating Smart Textiles, Scientific Technical Review, 61(3-4): 63-72 (2011).
[10] Mahalakshmi M., Vishnu Priya S., Arabindoo B., Palanichamy M., Murugesan V., Photocatalytic Degradation of Aqueous Propoxur Solution Using TiO2 and Beta Zeolite-Supported TiO2,  Journal of Hazardous Materials, 161(1): 336-343 (2009).
[11] Ma Y., Wang X., Jia Y., Chen X., Han H., Li C., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations,  American Chemical Society. Chem. Rev., 114(19): 9987-10043 (2014).
[12] Corma A., Moliner M., Cantin A., Diaz-Cabanas M. J., Jorda J.L., Zhang D., Sun J., Jansson K., Hovmoller S., Zou  X., Electron Crystallography on Porous Materials, Chem. Mater.,  20: 3218-3223 ( 2008(.
[13] Guo W., Xiong C., Huanga  L.,  Li Q., Synthesis and Characterization of Composite Molecular Sieves  Comprising Zeolite Beta with MCM-41 Structures,  J. Mater. Chem., 11: 1886-1890 ( 2001).
[14] Kiernan J.A., Classification and Naming of Dyes, Stains and Fluorochromes, Biotechnic and Histochemistry, 76(5-6): 261-278 (2001).
[15] Chattopadhyay D.P., “Handbook of Textile and Industrial Dyeing Principles, Processes and Types of Dyes” Volume 1 in Woodhead Publishing Series in Textiles Book (2011).
[16] Asses N., Ayed L., Hkiri N., Hamdi M., Congo red Decolorization and Detoxification by Aspergillus Niger: Removal Mechanisms and dye Degradation PathwayBioMed Research International, 7: 1-9 (2018).
[17] Wahi R.K., Yu W.W., Liu M.L., Mejia M.L., Falkner J.C., Nolte W., Colvin V.L., Photodegradation of Congo Red Catalyzed by Nanosized TiO2, Journal of Molecular Catalysis A: Chemical, 242(1-2): 48-56 (2005).
[18] Nadjia N., Elaziouti A., Bekka A., Photodegradation Study of Congo red in Aqueous Solution using ZnO/UV-A: Effect of pH and Band Gap of Other Semiconductor Groups, J. Chem. Eng. Process Technol., 2(2):  1-7 (2011).
[19] Alaei M., Mahjoub A.R., Alimoradi, R., Preparation of Different WO3 Nanostructures and Comparison of Their Ability for Congo Red Photo Degradation, Iranian Journal of Chemistry and Chemical Engineering, 31(1): 31-36 (2012).
[20] Ljubas D., Smoljani'c G., Jureti'c H., Degradation of Methyl Orange and Congo Red dyes by using TiO2 Nanoparticles Activated by the Solar and the Solar-Like Radiation, Journal of Environmental Management, 161: 83-91 (2015).
[21] Al-Harbi L.M., Kosa S.A., Abd El Maksod I.H., Hegazy E. Z., The Photocatalytic Activity of TiO2-Zeolite Composite for Degradation of Dye Using Synthetic UV and Jeddah SunlightJournal of Nanomaterials, 16(1): 1-6 (2015).
[22] Elmorsi T.M., Elsayed M.H., Bakr M.F., Na Doped ZnO Nanoparticles Assisted Photocatalytic Degradation of Congo Red Dye Using Solar Light, American Journal of Chemistry, 7(2): 48-57 ( 2017).
[23] Alshabanat M.N., AL-Anazy M.M., An Experimental Study of Photocatalytic Degradation of Congo Red Using Polymer Nanocomposite Films, Journal of Chemistry, 1-8 (2018).
[24] Bhagwat U.O., Wu J.J., Asiri A.M., Sambandam A., Photocatalytic Degradation of Congo Red using PbTiO3 Nanorods Synthesized via a Sonochemical Approach, Chemistry Select, 3(42): 11851-11858 (2018).
[25]  پازوکی، مریم؛ قاسم زاده، رضا؛ یاوری، محمد؛ عبدلی، محمد علی؛ بررسی عملکرد نانوذره تیتانیوم دی اکسید نقره دوپ (Ag/TiO2) در تخریب فوتوکاتالیستی اریترومایسین، نشریه شیمی و مهندسی شیمی ایران، (1)37: 63 تا 72 (1397).
[26] Harun N.H., Rahman M.N.A., Kamarudin W.F.W., Irwan Z., Muhammud A., Akhir N.E.F.M., Yaafar M.R., Photocatalytic Degradation of Congo Red Dye Based on Titanium Dioxide Using Solar and UV LampJ. Fundam. Appl. Sci., 10(1S): 832-846 ( 2018).
[27] Gedam V.V., Raut P., Chahande A., Pathak P., Kinetic, Thermodynamics and Equilibrium Studies on the Removal of Congo Red Dye Using Activated Teak Leaf Powder, Applied Water Science,  9(3): 55-67 (2019).
[28] Pascariu P., Cojocaru C., Olaru N., Samoila P., Airinei A., Ignat M., Sacarescu L., Timpu D., Novel Rare Earth (RE-La, Er, Sm) Metal Doped ZnO Photocatalysts for Degradation of Congo-Red Dye: Synthesis, Characterization and Kinetic Studies, Journal of Environmental Management,  239: 225-234 (2019).
[29] Xu H., Guan J., Wu S., Kan Q., Synthesis of Beta/MCM-41 Composite Molecular Sieve with High Hydrothermal Stability in Static and Stirred Condition,  Journal of Colloid and Interface Science, 329(2): 346-350 (2009).
[30] Vijayalakshmi R., Rajendran V., Synthesis and Characterization of Nano-TiO2 via Different Methods, Archives of Applied Science Research, 4(2): 1183-1190 (2012).
[31] Zhou C.-h., Xu S., Yang Y., Yang B.C., Hu H., Quan Z.C., Sebo B., Chen B.L., Tai Q.D., Sun Z.H., Zhao X.Z., Titanium Dioxide Sols Synthesized by Hydrothermal Methods Using Tetrabutyltitanate as Starting Material and the Application in Dye Sensitized Solar Cells, Electrochimica Acta56: 4308-4314 (2011).
[33] Camblor M.A., Corma A., Valencia S., Characterization of Nanocrystalline Zeolite Beta, Microporous and Mesoporous Materials, 25: 59-74 (1998).
[34] Rajakumar G., Abdul Rahumana A., Mohana Roopanb S., Gopiesh Khannac V., Elangoa, G., Kamaraj C., Abduz Zahir A., Velayuthama K., Fungus-Mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity Against Pathogenic Bacteria, Spectrochimica Acta Part A, 91: 23-29 (2012).
[35] Peng L., Ni Y., Wei X., Hanyu W., Duoqiang P., Wangsuo W., Removal of U(VI) from Aqueous Solution Using TiO2  Modified β-Zeolite, Radiochimica Acta, 105(12): 1005-1013 (2017).
[36] Lohse U., Altrichter B., Fricke R., Pilz W., Schreier E., Garkisch Ch., Jancke K., Synthesis of Zeolite Beta Part 2.—Formation of Zeolite Beta and titanium-Beta via an Intermediate Layer structure, J. Chem. Soc., Faraday Trans., 93(3): 505-512 (1997).
[37] Mohd Hasmizam R., Nur Arifah I., Khairul Anuar Mat A., Nanostructured TiO2 Materials: Preparation, Properties and Potential Applications (3P’s), Trans Tech Publications, 266: 84-89 (2017).
[38] Wang Y., Lap Ip Chan S., Amal R., Rong Shen Y., Kiatkittipong K., XRD Anisotropic Broadening of Nano-Crystallites,  JCPDS-International Centre for Diffraction Data. Advances in X-ray Analysis, 54: 92-100 )2011).
[39] Lafjah M., Djafri F., Bengueddach A., Kellera N., Keller V., Beta Zeolite Supported Sol-Gel TiO2 Materials for Gas Phase Photocatalytic Applications,  Journal of Hazardous Materials, 186: 1218-1225 (2011).
[40] Pirkanniemi K., Sillanpaa M., Heterogeneous Water Phase Catalysis as an Environmental Application: A Review, Chemosphere, 48(10): 1047-1060 (2002).
[43] Azouri A., Ge M., Xun K., Sattler K., Lichwa J., Ray C.,  “Zeta Potential Studies of Titanium Dioxide and Silver Nanoparticle Composites in Water-Based Colloidal Suspension”, ASME Multifunctional Nanocomposites International Conference, Honolulu, Hawaii, USA, September 20-22:  221-223 (2006).
[45] Reddy M.C., Sivaramakrishna L., Reddy A.V., The Use of an Agricultural Waste Material, Jujuba Seeds for the Removal of Anionic Dye (Congo Red) from Aqueous Medium, J. Hazard. Mater., 203-204: 118-127 (2012).
[46] Gözmena, B., Turabik, M., Hesenov, A., Photocatalytic Degradation of Basic Red 46 and Basic Yellow 28 in Single and Binary Mixture by UV/TiO2/Periodate System. J. Hazardous Mater., 164: 1487-1495 (2009).