Investigation of ZIF-8 Synthesis Using Choline Chloride-Urea Deep Eutectic Solvent for CO2 Uptake

Document Type : Research Article

Authors

Department of Chemical Engineering, Quchan University of Technology, Quchan, I.R. IRAN

Abstract

Undoubtedly, the formation of all the unique properties of the ZIF nanostructures depends on their proper and perfect synthesis. In this research, a simple and convenient method was used to synthesize ZIF-8 by a eutectic solvent of choline chloride with urea as an ionic liquid without the high energy at room temperature. Also, the effect of different operating parameters affecting the synthesis, such as salt/ligand molar ratio, temperature, ultrasound, and type of ionic liquid, were investigated. To evaluate the performance of this adsorbent, carbon dioxide capture, and equilibrium isotherms of this gas are accomplished at ambient temperature. The results demonstrated that the CO2 uptakes on synthesized ZIF-8 at room temperature in the low and high pressure of 1 and 14 bar are obtained 0.27 and 4.4 mmol/g respectively.

Keywords

Main Subjects


[1] Mirzadeh E., Akhbari K., Synthesis of Nanomaterials with Desirable Morphologies from Metal-Organic Frameworks for Various Applications, Cryst.Eng. Comm., 18(39): 7410-7424 (2016).
[3] Cravillon J., Münzer S., Lohmeier S.J., Feldhoff A., Huber K., Wiebcke M., Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework, Chem. Mater., 21(8): 1410-1412 (2009).
[4] Venna S.R., Carreon M.A.,­ Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation, J. Am. Chem. Soc., 132(1): 76-78 (2009).
[5] Yeo Z.Y., Zhu P.W., Mohamed A.R., Chai S.P., An Enhanced Hybrid Membrane of ZIF-8 and Zeolite T for CO2/CH4 Separation, CrystEngComm, 16(15): 3072-3075 (2014).
[6] Lai L.S., Yeong Y.F., Ani N.C., Lau K.K, Shariff A.M., Effect of Synthesis Parameters on the Formation of Zeolitic Imidazolate Framework 8 (ZIF-8) Nanoparticles for CO2 Adsorption, Part. Sci. Technol., 32(5): 520-528 (2014).
[7] Bhattacharjee S., Jang M.S., Kwon H.J, Ahn W.S., Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications, Catal. Surv. Asia, 18(4): 101-127 (2014).
[8] Belmabkhout Y., Guillerm V., Eddaoudi M., Low concentration CO2 Capture Using Physical Adsorbents: Are Metal-Organic Frameworks Becoming the New Benchmark Materials?Chem. Eng. J., 296: 386-397 (2016).
[9] Tatarko Jr, John L., "The production, Properties and Applications of the Zinc Imidazolate, ZIF-8", University of Louisville, (2015).
[10] Zeng X., Chen R.Y., Yang X.B., Li J.T,  Luo X.T., Synthesis and Characterization of Zeolitic Imidazolate Framework-8@ Sodalite Composite Particles, Mater. Sci. Forum, 852: 1250-1255 (2016(.
[12] Dey C., Kundu T., Biswal B.P., Mallick A,  Banerjee R., Crystalline Metal-Organic Frameworks (MOFs): Synthesis, Structure And Function, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(1): 3-10 (2014).
[13] Butova V.V.E., Soldatov M.A., Guda A.A., Lomachenko K.A, Lamberti C., Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization, Russ. Chem. Rev., 85(3): 280-307 (2016).
[14] Rubio-Martinez M., Avci-Camur C., Thornton A.W., Imaz I., Maspoch D., Hill M.R., New Synthetic Routes Towards MOF Production at Scale, Chem Soc Rev., 46(11): 3453-3480 (2017).
[15] Reinsch H., “Green” Synthesis of Metal‐Organic Frameworks, Eur. J. Inorg. Chem., 2016(27): 4290-4299 (2016).
[16] Fujie K., Kitagawa H., Ionic Liquid Transported into Metal-Organic Frameworks, Coord. Chem. Rev., 307: 382-390 (2016).
[18] Ferraz R., Prudêncio C., Vieira M., Fernandes R, Noronha J.P., Ionic Liquids Synthesis–Methodologies, Organic Chem. Curr. Res., 46(38): 1-2 (2015).
[19] Zhang J., Han B., Li J., Zhao Y.,  Yang G., Carbon Dioxide in Ionic Liquid Microemulsions, Angew Chem. Int. Edit., 50(42): 9911-9915 (2011).
[20] شریفی، سید میثم؛ بهزادی، بهمن؛ " بررسی روش­های عمومی سنتز مایعات یونی با نگاه ویژه به سنتز مایعات یونی آمینواسید اولین کنفرانس بین المللی نفت، گاز، پتروشیمی و نیروگاه، (1391).
[21] Zhang Q., Vigier K.D.O., Royer S., Jérôme F., Deep Eutectic Solvents: Syntheses, Properties And Applications, Chem. Soc. Rev., 41(21): 7108-7146 (2012).
[22] Wang Y., Xu Y., Ma H., Xu R., Liu H., Li D., Tian Z., Synthesis of ZIF-8 in a Deep Eutectic Solvent Using Cooling-Induced Crystallisation, Micropor Mesopor Mat., 195: 50-59 (2014).
[23] راهبری سی­سخت، مسعود؛ تقی زاده، روح الله؛ پورانفراد، عبدالرسول؛ "جذب گاز دی­اکسیدکربن با استفاده از مایعات یونیچهاردهمین کنگره ملی مهندسی شیمی ایران، (1391).
[24] Sistla Y.S., Khanna A., Carbon Dioxide Absorption Studies Using Amine-Functionalized Ionic Liquids, J. Ind. Eng. Chem., 20(4): 2497-2509 (2014).
[25] Chen B., Yang Z., Zhu Y., Xia Y., Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, J. Mater. Chem. A, 2: 16811–16831 (2014). 
[26] Azizi N., Dezfooli S., Hashemi M.M., Greener Synthesis of Spirooxindole in Deep Eutectic Solvent, J. Mol. Liq., 194: 62-67 (2014).
[27] Liu C., Sun F., Zhou S., Tian Y., Zhu G., Facile Synthesis of ZIF-8 Nanocrystals in Eutectic Mixture, CrystEngComm, 14(24): 8365-8367 (2012).
[28] Hu Y., Kazemian H., Rohani S., Huang Y., Song Y., In Situ High Pressure Study of ZIF-8 by FTIR Spectroscopy, Chem. Commun., 47(47): 12694-12696 (2011).
[29] Yao J., Chen R., Wang K., Wang H., Direct Synthesis of Zeolitic Imidazolate Framework-8/Chitosan Composites in Chitosan Hydrogels, Micropor Mesopor Mat.,165: 200-204 (2013).
[30] He M., Yao J., Liu Q., Wang K., Chen F., Wang H., Facile Synthesis of Zeolitic Imidazolate Framework-8 from a Concentrated Aqueous Solution, Micropor Mesopor Mat., 184: 55-60 (2014).
[31] Shahrak M.N., Ghahramaninezhad M., Eydifarash M., Zeolitic Imidazolate Framework-8 for Efficient Adsorption and Removal of Cr (VI) Ions from Aqueous Solution, Environ. Sci. Pollut. R., 24(10): 9624-9634 (2017).
[32] Nune S.K., Thallapally P.K., Dohnalkova A., Wang C., Liu J., Exarhos G.J., Synthesis and Properties of Nano Zeolitic Imidazolate Frameworks, Chem. Commun., 46(27): 4878-4880 (2010).
[34] فشی، فاطمه؛ قائمی، احد؛ مرادی، پیمان؛ مقایسه عملکرد اصلاح جاذب‏های زئولیت و آلومینا با محلول پیپرازین برای افزایش شدت جذب گاز کربن دی‌اکسید،  نشریه شیمی و مهندسی شیمی ایران، (2)39: 99 تا 110 (1399).
[35] مهدی­زاده، مرضیه؛ قائمی، احد؛ مدل‌سازی و شبیه‌سازی ستون بستر ثابت جذب واکنش‌دار کربن‌دی‌اکسید توسط پلی‌اسپارتامید، نشریه شیمی و مهندسی شیمی ایران، (4)38 : 189تا198 (1398).