Modeling of Carbon Dioxide Separation from Gas Mixture Using Poly Propylene Hollow Fiber Membranes in the Presence of Ionic Liquid [Emim][EtSO4]

Document Type : Research Article


Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, I.R. IRAN


Carbon Dioxide exists in some gases like natural gas and synthesis gas can make some problems such as reducing heat value, corrosion, and environmental problems in petrochemical like ammonia plants. Using hollow fiber membrane contactors with a suitable absorbent liquid is one of the separation methods in which, cation and anion modification can cause to approach a desired absorbent liquid and higher efficiency. This study's purpose is the modeling of carbon dioxide physical absorption from CO2/N2 mixture through hollow fiber membrane contactors using ionic liquids [Emim][EtSO4]. Mass transfer in the gas, membrane, and liquid phases consists of some partial differential equations that can be solved by numerical solution simultaneously. The model is validated with -Water experimental data due to the lack of data for CO2-Ionic liquids in the literature and it was found that the model with a mean error of about 7.5% was in good agreement with the experimental data which would be an appropriate model to predict the physical CO2 absorption in this study. After validation, the effects of parameters like liquid and gas flow rates, temperature, CO2 molar percentage in the feed gas, the membrane specification, non-wetting, and complete wetting of the membrane are investigated on absorption. The results showed that at a constant fluid flow rate of 25 mL/min, the presence of ionic liquid absorbed about 40% of the CO2 in the inlet gas and an increase of 30 ml/min in the presence of ionic liquid also increased the Carbon dioxide absorption by 15%. Increasing the wettability from zero to 100% will also reduce the CO2 removal efficiency by approximately 15%.


Main Subjects

[1] Fougerit V., Pozzobon V., Pareau D., Théoleyre M. A., Stambouli M., Experimental and Numerical Investigation Binary Mixture Mass Transfer in a Gas–Liquid Membrane Contactor, Journal of Membrane Sscience, 572: 1-11 (2019).
 [2] Ahmadi H., Hashemifard S.A., Ismail A.F., A Research on CO2 Removal Via Hollow Fiber Membrane Contactor: The Effect of Heat Treatment., Chemical Engineering Research, and Design 120: 218-230 (2017).
[3] سروش، سپیده؛ بختیاری، امید، مدل­ سازی بازیابی موادخوش بو از جریان های دربرگیرنده آن ها با تماس دهنده های غشایی، نشریه شیمی و مهندسی شیمی ایران، (1)33: 9 تا 19(1393)
[4] Nakhjiri A.T., Taghvaie A., Heydarinasab A., Bakhtiari O., and Mohammadi T., Experimental Investigation and Mathematical Modeling of CO2 Sequestration From CO2/CH4 Gaseous Mixture Using MEA and TEA Aqueous Absorbents Through Polypropylene Hollow Fiber Membrane Contactor., Journal of Membrane Science 565: 1-13 (2018).
 [5] Keshavarz P., Fathikalajahi J., Ayatollahi S., Analysis of CO2 Separation and Simulation of a Partially Wetted Hollow Fiber Membrane Contactor. Journal of Hazardous Materials, 152(3): 1237-1247 (2008).
[6] Gabelman A., Hwang S.A., Hollow Fiber Membrane Contactors., Journal of Membrane Science 159(1-2): 61-106 (1999).
[8] Mesbah, M., Momeni, M., Soroush, E., Shahsavari, S., & Galledari, S. A., Theoretical Study of CO2 Separation from CO2/CH4 Gaseous Mixture Using 2-Methyl Piperazine-Promoted Potassium Carbonate Through Hollow Fiber Membrane Contactor., Journal of Environmental Chemical Engineering, 7(1): 102781 (2019).
 [9] Andreu J.S., Vega, L.F., Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model., The Journal of Physical Chemistry C, 111(43): 16028-16034 (2007).
[10] Rogers R.D., Ionic Liquids: Industrial Applications to Green Chemistry”, ACS Symposium Series. American Chemical Society (2002).
[11] Esato K., Eiseman B., Experimental Evaluation of Gore-Tex Membrane Oxygenator., The Journal of Thoracic and Cardiovascular Surgery, 69(5): 690-697 (1975).
[12] Dindore V.Y., Brilman D.W.F., Versteeg, G.F., Modelling of Cross-Flow Membrane Contactors: Mass Transfer with Chemical Reactions., Journal of Membrane Science, 255(1-2): 275-289 (2005).
[13] Masoumi S., Keshavarz P., Rastgoo Z., Theoretical Investigation on CO2 Absorption Into DEAB Solution Using Hollow Fiber Membrane Contactors., Journal of Natural Gas Science and Engineering, 18: 23-30 (2014).
 [14] Lu J.G., Lu C.T., Chen, Y., Gao, L., Zhao, X., Zhang, H., Xu, Z.W., CO2 Capture by Membrane Absorption Coupling Process: Application of Ionic Liquids., Applied Energy, 115: 573-581 (2014).
[15] Rezakazemi, M., Niazi, Z., Mirfendereski, M., Shirazian, S., Mohammadi, T., Pak, A., CFD Simulation of Natural Gas Sweetening in a Gas-Liquid Hollow-Fiber Membrane Contactor., Chemical Engineering Journal, 168(3): 1217-1226 (2011).
[16] نجف لو، اعظم; مدل­ سازی ترمودینامیکی جذب دی اکسیدکربن در محلول آبی متیل دی اتانول آمین، نشریه شیمی و مهندسی شیمی ایران،38(2): 183 تا 194 (1398)
[17] Ben-Mansour R., Basha M., Qasem N.A., Multicomponent and Multi-Dimensional Modeling and Simulation of Adsorption-Based Carbon Dioxide Separation., Computers & Chemical Engineering, 99: 255-270 (2017).
[18] McNeil M.V., Wilfart F.M., Haelssig J.B., Modelling Hollow Fiber Membrane Modules for Anesthesia Gas Separation., Chemical Engineering Science, 191: 479-489 (2018).
[19] Chu Y., Lindbråthen A., Lei L., He X., Hillestad, M., Mathematical Modeling and Process Parametric Study of CO2 Removal from Natural Gas by Hollow Fiber Membranes., Chemical Engineering Research and Design. (2019).
[20] Haghayegh M., Zabihi F., Eikani M.H., Kamya Moghadas B., Vaziri Yazdi S.A., Supercritical fluid Extraction of Flavonoids and Terpenoids from Herbal Compounds: Experiments and Mathematical Modeling., Journal of Essential oil Bearing Plants, 18(5): 1253-1265 (2015).
 [21] Moghadas B.K., Safekordi A.A., Honarvar B., Kaljahi J.F., Yazdi S.V., Supercritical Extraction of Flavonoid Compounds from Dorema aucheri Boiss., Experimental and Modeling Using CH2Cl2 as Co-Solvent. Asian Journal of Chemistry, 24(8): (2012).
[23] Zhang H.Y., Wang R., Liang D.T., Tay J.H., Modeling and Experimental Study of CO2 Absorption in a Hollow Fiber Membrane Contactor., Journal of Membrane Science, 279(1-2): 301-310 (2006).
 [24] Wang R., Li D.F., Liang D.T., Modeling of CO2 Capture by Three Typical Amine Solutions in Hollow Fiber Membrane Contactors., Chemical Engineering and Processing: Process Intensification, 43(7): 849-856 (2004).
[25] Karoor S., Sirkar K.K., Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules., Industrial & Engineering Chemistry Research, 32(4): 674-684 (1993).
[26] Mehdipour M., Karami M. R., Keshavarz P., Ayatollahi S., Analysis of CO2 Separation with Aqueous Potassium Carbonate Solution in a Hollow Fiber Membrane Contactor., Energy & Fuels, 27(4): 2185-2193 (2013).
[27] Keller K.H., Stein T.R., A Two-Dimensional Analysis of Porous Membrane Transport., Mathematical Biosciences, 1(3): 421-437 (1967).
[28] Happel J., Viscous Flow Relative to Arrays of Cylinders., AIChE Journal, 5(2): 174-177 (1959).
[29] Versteeg G.F., Van Swaaij W.P., Solubility and Diffusivity of Acid Gases (Carbon Dioxide, Nitrous Oxide) in Aqueous Alkanolamine Solutions., Journal of Chemical & Engineering Data, 33(1): 29-34 (1988).
[30] Bird R.B., Stewart W.E., Lightfoot E.N., “Transport Phenomena”, John Wiley & Sons, Inc. (2007).
[31] Jalili A.H., Mehdizadeh A., Shokouhi M., Ahmadi A.N., Hosseini-Jenab M., Fateminassab F., Solubility and Diffusion of CO2 and H2S in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate, The Journal of Chemical Thermodynamics, 42(10): 1298-1303 (2010). 
[32] Streeter V. L., Wylie E. B., Bedford K. W., "Fluid Mechanics", McGraw-Hill College 1997).