Development of Quantitative Structure-Property Relationship Models to Predict the upper Flammability Limit of Organic Compounds

Document Type : Research Article


Department of Chemistry, Marvdasht Branch. Islamic Azad University, Marvdasht, I.R. IRAN


In this study, the Quantitative Structure-Property Relationship (QSPR) was proposed to predict the Upper Flammability Level (UFL) of 588 organic compounds including hydrocarbon compounds, halogenated compounds, alcohols, ethers, esters, aldehydes, ketones, acids, amines, amides, nitriles, and nitro compounds. A variety of molecular descriptors were calculated for each molecule. The Memorized-Ant Colony Algorithm (M-ACO) combined with multivariate linear regression (MLR) was used to select the best subset of descriptors that have a significant contribution to the UFL property. Different variable transformations were performed on both dependent and independent variables to obtain better multiple linear regression models. The best model was a four-variable model obtained by using the calculated descriptors as independent variables and the logarithm of UFL values as the dependent variable. This model has a very wide applicability range of UFL from 2/7 to 100 vol %. The training and test errors of the model were found to be 0/1 log UFL unit (R2 = 0.80) and 0.12 log UFL unit (R2 = 0.75), respectively. Therefore, the model has good accuracy and can be used to predict the UFL of a wide range of organic compounds.


Main Subjects

[3] Winterbone D., Turan A., “Advanced Thermodynamics for Engineers”. 2nd ed. Butterworth-Heinemann, Arnold, London, (2015).
[4] Vidal M., Rogers W., Holste J., Mannan M., A Review of Estimation Methods for Flash Points and Flammability Limits, Process Saf. Prog., 23: 47-55 (2004).
[5] Albahri T.A., Flammability Characteristics of Pure Hydrocarbons, Chem. Eng. Sci., 58: 3629-3641 (2003).
[6] Pan Y., Jiang J., Ding X., Wang R., Jiang J., Prediction of Flammability Characteristics of Pure Hydrocarbons from Molecular Structures, AlChE J., 56: 690-701 (2010).
[7] High M.S., Danner R.P., Prediction of Upper Flammability Limit by a Group Contribution Method, Ind. Eng. Chem. Res., 26: 1395-1399 (1987).
[10] Suzuki T., Ishida M., Neural Network Techniques Applied to Predict Flammability Limits of Organic Compounds, Fire Mater., 19: 179-189 (1995).
[11] پوربشیر ا.، مهاجری اول ژ.، نکوئی م.، حمیدوند س.، مطالعه ارتباط کمّی ساختار- فعالیت برای پیش بینی فعالیت مهارکنندگیPIM  مشتق‌های تری آزولوپیریدین با استفاده از الگوریتم ژنتیک ـ برازش خطی چندگانه، نشریه شیمی و مهندسی شیمی ایران، 37: 137 تا 148 (1397).
[12] قدیمی س.، رشنو طائی م.ا.، ابراهیمی ولموزویی ع.ا.، سامانی ک.ا.، جوانی ز.، نصرت زادگان ک.، پورایوبی م.، معادله ساختار و فعالیت در فسفرآمیدها، نشریه شیمی و مهندسی شیمی ایران، (3)30: 91 تا 105 (1390).
[13] رحمان ستایش ش.، طریک ع.، زبیدی ر.، پیش‌بینی دمای ذوب مایع‌های یونی بر پایه آنیون بیس (تری‌فلورومتیل‌سولفونیل) ایمید با رویکردQSPR ، نشریه شیمی و مهندسی شیمی ایران، (1)39: 149 تا 158 (1399).
[14] Todeschini R., Consonni V., Handbook of Molecular Descriptors. John Wiley & Sons, (2008).
[15] Karelson M., Lobano, V.S., Katritzky A.R., Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chem. Rev., 96: 1027-1044 (1996).
[16] Pan Y., Jiang J., Wang R., Cao H., Cui Y., Prediction of the Upper Flammability Limits of Organic Compounds from Molecular Structures, Ind. Eng. Chem. Res., 48: 5064-5069 (2009).
[19] Taskinen J., Yliruusi J., Prediction of Physicochemical Properties Based on Neural Network Modelling, Adv. Drug Del. Rev., 55: 1163-1183 (2003).
[20] Zare-Shahabadi V., Lotfizadeh M., Gandomani A.R.A., Papari M.M., Determination of Boiling Points of Azeotropic Mixtures Using Quantitative Structure–Property Relationship (QSPR) Strategy, J. Mol. Liq., 188: 222-229 (2013).
[21] Mirjalili S., Evolutionary Algorithms and Neural Networks, Springer, 33-42 (2019).
[22] Dorigo M., Stützle T., “Handbook of Metaheuristics”, Springer, 311-351 (2019).
[23] Atabati M., Zarei K., Borhani A., Ant Colony Optimization as a Descriptor Selection in QSPR Modeling: Estimation of the Λmax of Anthraquinones-Based Dyes, J. Saudi Chem. Soc., 20: S547-S551 (2016).
[24] Shamsipur M., Zare-Shahabadi V., Hemmateenejad B., Akhond M., An Efficient Variable Selection Method Based on the Use of External Memory in Ant Colony Optimization. Application to QSAR/QSPR Studies, Anal. Chim. Acta, 646: 39-46 (2009).
[25] Hemmateenejad B., Shamsipur M., Zare-Shahabadi V., Akhond M., Building Optimal Regression Tree by Ant Colony System–Genetic Algorithm: Application to Modeling of Melting Points, Anal. Chim. Acta, 704: 57-62 (2011).
[26] Dorigo M., Stützle T., “Ant Colony Optimization”, The MIT Press. The MIT Press, Cambridge, Massachusetts, (2004).
[28] Abbasitabar F., Zare-Shahabadi V., Development Predictive QSAR Models for Artemisinin Analogues by Various Feature Selection Methods: A Comparative Study, SAR QSAR Environ. Res., 23: 1-15 (2012).
[29] Chandrashekar G., Sahin F., A Survey on Feature Selection Methods, Comput. Electr. Eng., 40: 16-28 (2014).
[30] Filgueiras P.R., Portela N.A., Silva S.R.C., Castro E.V.R., Oliveira L.M.S.L., Dias J.C.M., Neto A.C., Romão W., Poppi R.J., Determination of Saturates, Aromatics, and Polars in Crude Oil by 13C NMR and Support Vector Regression with Variable Selection by Genetic Algorithm, Energy Fuels, 30: 1972-1978 (2016).
[31] Yuan S., Jiao Z., Quddus N., Kwon J.S., II, Mashuga C.V., Developing Quantitative Structure–Property Relationship Models to Predict the Upper Flammability Limit Using Machine Learning, Ind. Eng. Chem. Res., 58: 3531-3537 (2019).
[32] Cvetnic M., Perisic D.J., Kovacic M., Ukic S., Bolanca T., Rasulev B., Kusic H., Bozic A.L., Toxicity of Aromatic Pollutants and Photooxidative Intermediates in Water: A QSAR Study, Ecotoxicology Environmental Safety, 169: 918-927 (2019).
[33] Garcia M.L., de Oliveira A.A., Bueno R.V., Nogueira V.H., de Souza G.E., Guido R.V., QSAR Studies on Benzothiophene Derivatives as Plasmodium Falciparum N‐Myristoyltransferase Inhibitors: Molecular Insights into Affinity and Selectivity, Drug Dev. Res., 83(2): 264-284 (2020).
[36] Zare-Shahabadi V., Quantitative Structure–Activity Relationships of Dihydrofolatereductase Inhibitors, Med. Chem. Res., 25: 2787-2797 (2016).
[37] Faramarzi Z., Abbasitabar F., Zare-Shahabadi V., Jahromi H.J., Novel Mixture Descriptors for the Development of Quantitative Structure-Property Relationship Models for the Boiling Points of Binary Azeotropic Mixtures, J. Mol. Liq., 296: 111854 (2019).
[38] Martin Y.C., “Quantitative Drug Design: A Critical Introduction”, CRC Press, (2010).
[39] Abbasitabar F., Zare-Shahabadi V., QSAR Study of Artemisinin Analogues as Antimalarial Drugs by Neural Network and Replacement Method, Drug Res., 67: 476-484 (2017).
[40] Zhu J., Lu W., Liu L., Gu T., Niu B., Classification of Src Kinase Inhibitors Based on Support Vector Machine, QSAR & Combinatorial Science, 28: 719-727 (2009).
[43] Draper N.R., Smith H., “Applied Regression Analysis”, John Wiley & Sons Inc , (1998).
[45] Hansch C., Quantitative Approach to Biochemical Structure-Activity Relationships, Acc. Chem. Res., 2: 232-239 (1969).
[46] Jo D.H., Lee S.G., Kim B.T., No G.T., Quantitative Structure-Activity Relationship (QSAR) Study of New Fluorovinyloxycetamides, Bull. Korean Chem. Soc., 22: 388-394 (2001).
[47] Kier L.B., Hall L.H., Derivation and Significance of Valence Molecular Connectivity, J. Pharm. Sci., 70: 583-589 (1981).
[48] Filipic S., Antic A., Vujovic M., Nikolic K., Agbaba D., A Comparative Study of Chromatographic Behavior and Lipophilicity of Selected Imidazoline Derivatives, J. Chromatogr. Sci., 54: 1137-1145 (2016).
[49] Tamiji Z., Salahinejad M., Niazi A., Molecular Modeling of Potential Pet Imaging Agents for Adenosine Receptor in Parkinson’s Disease, Struct. Chem., 29: 467-479 (2018).
[50] Wildman S.A., Crippen G.M., Prediction of Physicochemical Parameters by Atomic Contributions, J. Chem. Inf. Comput. Sci., 39: 868-873 (1999).