Silver Nanoparticles/Bacterial Cellulose Nanofiber Optical Sensor for Determination of 2-Mercaptobenzoxazole

Document Type : Research Article

Authors

Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN

Abstract

In the present research, an optical sensor based on bacterial cellulose nanofibers (BCNF) film containing silver nanoparticles (AgNP) was fabricated and used for the determination of 2-mercaptobenzoxazole (MBO), which is considered a poisonous and pollutant agent of water. To fabricate nanocomposite, the effective variables in the fabrication process such as pH of the solution, AgNO3 concentration, the mass ratio of Ag to nano paper, temperature, and reaction time was optimized. The results obtained from Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive x-ray Spectroscopy (EDS), Thermal Gravimetry Analysis (TGA), and UV-Vis spectroscopy showed that AgNPs have been successfully synthesized and fixed in the structure of BCNF film. The changes in peak absorption of local surface plasmonic of AgNP to the increase of MBO concentration were considered as an analytic sign. The prepared sensor has a linear range of 5 - 150 μg mL-1 and a limit of detection of 1.7 μg mL-1 for the determination of MBO. To evaluate the selectivity of the sensor, its performance was investigated in the presence of interference compounds. To investigate the practical performance of the sensor to detect MBO, a water sample of Tejan River was evaluated. The results confirmed that the sensor has selectivity ability in the presence of other probable troublesome compounds and is suitable to detect MBO in real samples.

Keywords

Main Subjects


[2] Bussolotti F., D’Addato S., Allegretti F., Dhanak V., Mariani C., Molecular Orientation of 2-Mercaptobenzoxazole Adsorbed on Cu (100) Surface, Surf. Sci., 578: 136–141 (2005).
[4] Kermannezhad K., Chermahini A.N., Momeni M.M., Rezaei B., Application of Amine-Functionalized MCM-41 as pH-Sensitive Nano Container for Controlled Release of 2-Mercaptobenzoxazole Corrosion Inhibitor, Chem. Eng. J., 306: 849-857 (2016).
[5] Fukuhara G., Analytical Supramolecular Chemistry: Colorimetric and Fluorimetric Chemosensors, J. Photoch. Photobio C: Photoch. Rev., 42: 100340 (2020).
[7] Wang N., Liu Y., Li Y., Xie M., Fluorescent and Colorimetric Sensor for Cu2+ Ion based on Formaldehyde Modified Hyperbranched Polyethylenimine Capped Gold Nanoparticles, Sensor Actuat. B: Chem., 255: 78-86 (2019).
[9] Wang X., Hou J., Lan S., Shen C., Huo D., Ji Z., Ma Y., Liu H., Zhang S., He Q., Hou C., MoS2 QDs-based Sensor for Measurement of Fluazinam with Triple Signal Output, Anal. Chim. Acta., 1108: 152-159 (2020).
[10] Farrera C., Torres Andón F., Feliu N., Carbon Nanotubes as Optical Sensors in Biomedicine, ACS Nano11(11): 10637-10643 (2017).
[11] Sun X., Lei Y., Fluorescent Carbon Dots and their Sensing Applications, TrAC Trend. Anal. Chem.89: 163-180 (2017).
[13] Sabela M., Balme S., Bechelany M., Janot J.M., Bisetty K., A Review of Gold and Silver Nanoparticle-based Colorimetric Sensing Assays, Adv. Eng. Mater.19(12): 1700270 (2017).
[14] Oliveira L.C., Lima A.M.N., Thirstrup C., Neff H.F., “Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage”, 70: Springer (2019).
[15] Špačková B., Wrobel P., Bocková M., Homola J., Optical Biosensors Based on Plasmonic Nanostructures: A ReviewProc. IEEE104(12): 2380-2408 (2016).
[16] Hong Y., Huh Y. M., Yoon D.S., Yang J., Nanobiosensors based on Localized Surface Plasmon Resonance for Biomarker Detection, J. Nanomater., 2012: 111 (2012).
[17] Sun J., Lu Y., He L., Pang J., Yang F., Liu, Y., Colorimetric Sensor Array based on Gold Nanoparticles: Design Principles and Recent Advances, TrAC Trend. Anal. Chem., 112: 115754 (2019).
[18] Zhou J., Yang T., Chen J., Wang C., Zhang H., Shao Y., Two-Dimensional Nanomaterial-based Plasmonic Sensing Applications: Advances and Challenges, Coord. Chem. Rev., 410: 213218 (2020).
[19] Kedem O., Vaskevich A., Rubinstein I., Critical Issues in Localized Plasmon Sensing, The J. Phys. Chem. C118(16): 8227-8244 (2014).
[20] Barhoum A., Li H., Chen M., Cheng L., Yang W., Dufresne A., “Emerging Applications of Cellulose Nanofibers”, Handbook of Nanofibers, Springer, 1131-1156 (2019).
[21] Li Y., Zho H., Gu H., Dai H., Fang Z., Weadock N.J., Guo Z., Hu L., Strong Transparent Magnetic Nanopaper Prepared by Immobilization of Fe3O4 Nanoparticles in a Nanofibrillated Cellulose Network, J. Mater. Chem. A, 1: 15278-15283 (2013).
[22] Wang X., Yao C., Wang F., Li Z., Cellulose-Based Nanomaterials for Energy Applications, Small, 13(42): 1702240 (2017).
[24] Moradi M., Tajik H., Almasi H., Forough M.,  Ezati P., A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydrate Polymers, 222: 115030 (2019).
[26] Lv P., Yao Y., Li D., Zhou H., Naeem M. A., Feng Q., Huang J., Cai Y., Wei Q., Self-Assembly of Nitrogen-Doped Carbon Dots Anchored on Bacterial Cellulose and their Application in Iron Ion DetectionCarbohydrate Polymers172: 93-101 (2017).
[27] Yao J., Ji P., Wang B., Wang  H., Chen S., Color-Tunable Luminescent Macrofibers based on CdTe QDs-Loaded Bacterial Cellulose Nanofibers for pH and Glucose SensingSens. Actuat. B: Chem.254: 110-119 (2018).
[29] Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A, Sakakibara C.N, de Souza C.F., Martin A.A., daSilva R., de Freitas R.A., Bacterial Cellulose in Biomedical Applications: A ReviewInt. J.Biol. Macromol.104: 97-106 (2017).
[30] Khamra M., Banerjee S.L., Paul S., Ghosh A.K., Sarkar P., Kundu P.P., A Mussel Mimetic, Bioadhesive, Antimicrobial Patch based on Dopamine-Modified Bacterial Cellulose/rGO/Ag NPs: A Green Approach Toward Wound-Healing Applications, ACS Sustain. Chem. Eng., 7(14): 12083-12097 (2019).
[31] Van Zyl E.M., Coburn J.M., Hierarchical Structure of Bacterial-Derived Cellulose and its Impact on Biomedical ApplicationsCurr. Opin. Chem. Eng.24: 122-130 (2019).
[34] Farah A.A., Alvarez-Puebla R.A., Fenniri H., Chemically Stable Silver Nanoparticle-Crosslinked Polymer Microspheres, J. Colloid Interface Sci., 319: 572-576 (2008).
[35] Nishimura S., Mott  D.,  Takagaki A., Maenosono S., Ebitani K., Role of Base in the Formation of Silver Nanoparticles Synthesized using Sodium Acrylate as a Dual Reducing and Encapsulating Agent, Phys. Chem. Chem. Phys., 13: 9335-9343 (2011).
[36] Barud H.S., Barrios C., Regiani T., Marques R.F., Verelst M., Dexpert-Ghys J., Messaddeq Y., Ribeiro S.J.L., Self-Supported Silver Nanoparticles Containing Bacterial Cellulose Membranes, Mater. Sci. Eng. C28(4): 515-518 (2008).
[37] Mashkour M., Tajvidi M., Kimura F., Yousefi H., Kimura T., Strong Highly Anisotropic Magnetocellulose Nanocomposite Films Made by Chemical Peeling and In-Situ Welding at the Interface using an Ionic Liquid, ACS Appl. Mater. Interfaces, 6: 8165–8172 (2014).
[38] Yousefi H., Faezipour M., Hedjazi S., Mousavi M.M., Azusa Y.,  Heidari A.H., Comparative Study of Paper and Nanopaper Properties Prepared from Bacterial Cellulose Nanofibers and Fibers/Ground Cellulose Nanofibers of Canola Straw, Ind. Crops Prod.43: 732-737 (2013).
[39] Guan F., Chen S., Yao J., Zheng W., Wang H., ZnS/Bacterial Cellulose/Epoxy Resin (ZnS/BC/E56) Nanocomposites with Good Transparency and Flexibility, J. Mater. Sci. Technol.32(2): 153-157 (2016).
[40] Bigotto A., Pergolese B., Surface-Enhanced Raman Spectroscopic Studies of 2-Mercaptobenzoxazole on Silver Sols, J. Raman Spectros.32(11): 953-959 (2001).
[41] González A.L., Noguez C., Beránek J., Barnard A.S., Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles, J. Phys. Chem. C118(17): 9128-9136 (2014).
[42] Skoog D.A., West D.M., Holler F.J., Crouch S.R., “Fundamentals of Analytical Chemistry”, Cengage learning, (2013). 
[43] Zhang  X.B., Peng J., He C.L., Shen G.L., Yu R.Q., A Highly Selective Fluorescent Sensor for Cu2+ based on 2-(2′-Hydroxyphenyl) Benzoxazole in a Poly (Vinyl Chloride) Matrix, Anal. Chim. Acta567(2): 189-195 (2006).