A Zn(II) Complex of Tetraaza Macrocyclic Schiff Base Ligand: Synthesis, Characterization, Its Experimental and Theoretical Interaction Studies with CT-DNA and BSA

Document Type : Research Article


Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, I.R. IRAN


A tetraaza macrocyclic Schiff base complex of Zn(II) was synthesized by the reaction of ortho-phenylenediamine, acetylacetone, and anhydrous ZnCl2 in the ratio of 1:2:1, respectively. We adopted one pot template synthesis. The synthesized Zn(II) complex was characterized by repeating conductivity measurements, elemental analysis, decomposition point determinations, and spectroscopic methods such as FT-IR, 1H NMR, and UV-Vis studies. The interaction between the above Zn(II) complex (bis(acetylacetone-o-phenylenediamine)Zn(II) chloride) with calf thymus-deoxyribonucleic acid (CT-DNA) and bovine serum albumin (BSA) was studied by ultraviolet-visible absorption spectroscopy. The values of the binding constant suggest that the interaction affinity of the metal complex to CT-DNA is more as compared to BSA. The concentration of Zn(II) complex at the midpoint of the transition from native to interacted with CT-DNA is lower as compared to BSA. Moreover, the Hill coefficient, h, has a value of 1.1 which confirms the non-cooperativity in the binding of Zn(II) complex with BSA. Furthermore, in order to investigate the interaction between Zn(II) complex and DNA as well as BSA, the docking simulation was performed with the optimized structure of the complex.


Main Subjects

[1] Al Zoubi W., Kandil F., Chebani K., Active Transport of Metal Ions by using Schiff Bases, Phys. Sci. Res. Int., 2(1): 12–23 (2014).
[3] Cozzi P.G., Metal–Salen Schiff base Complexes in Catalysis: Practical Aspects, Chem. Soc. Rev., 33(7): 410–421 (2004).
[4] Gupta K.C., Sutar A.K., Lin C.-C., Polymer-Supported Schiff base Complexes in Oxidation Reactions, Coord. Chem. Rev., 253(13–14): 1926–1946 (2009).
[5] Xia Q.-H., Ge H.-Q., Ye C.-P., Liu Z.-M., Su K.-X., Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation, Chem. Rev., 105(5): 1603–1662 (2005).
[6] Guo P., Wong K.-Y., Enantioselective Electrocatalytic Epoxidation of Olefins by Chiral Manganese Schiff-Base Complexes, Electrochem. Commun., 1(11): 559–563 (1999).
[7] Cheung K.-C., Wong W.-L., Ma D.-L., Lai T.-S., Wong K.-Y., Transition Metal Complexes as Electrocatalysts—Development and Applications in Electro-Oxidation Reactions, Coord. Chem. Rev., 251(17–20): 2367–2385 (2007).
[8] Shamsipur M., Yousefi M., Hosseini M., Ganjali M.R., Sharghi H., Naeimi H., A Schiff Base Complex of Zn (II) as a Neutral Carrier for Highly Selective PVC Membrane Sensors for the Sulfate Ion, Anal. Chem., 73(13): 2869–2874 (2001).
[9] Sunatsuki Y., Motoda Y., Matsumoto N., Copper(II) Complexes with Multidentate Schiff-Base Ligands Containing Imidazole Groups: Ligand-Complex or Self-Complementary Molecule?, Coord. Chem. Rev., 226(1–2): 199–209 (2002).
[10] Ziessel R., Schiff-based Bipyridine Ligands. Unusual Coordination Features and Mesomorphic Behaviour, Coord. Chem. Rev., 216: 195–223 (2001).
[11] Vallee B.L., Auld D.S., Zinc Coordination, Function, and Structure of Zinc Enzymes and other Proteins, Biochemistry, 29(24): 5647–5659 (1990).
[12] Voegelin A., Pfister S., Scheinost A.C., Marcus M.A., Kretzschmar R., Changes in Zinc Speciation in Field Soil after Contamination with Zinc Oxide, Environ. Sci. Technol., 39(17): 6616–6623 (2005).
[14] Ghorai P., Saha R., Bhuiya S., Das S., Brandão P., Ghosh D., Bhaumik T., Bandyopadhyay, P., et al., Syntheses of Zn(II) and Cu(II) Schiff Base Complexes using N, O Donor Schiff Base Ligand: Crystal Structure, DNA Binding, DNA Cleavage, Docking and DFT Study, Polyhedron, 141: 153–163 (2018).
[15] Patra A.K., Roy S., Chakravarty A.R., Synthesis, Crystal Structures, DNA Binding and Cleavage Activity of L-Glutamine Copper(II) Complexes of Heterocyclic Bases, Inorganica Chim. Acta, 362(5): 1591–1599 (2009).
[16] Haribabu P., Patil Y.P., Reddy K.H., Nethaji M., DNA-Binding and Nuclease Activity of 1,10-Phenanthroline-Based Thiocyanato, Acetato, Azido and Benzoato Bridged Dinuclear Copper(II) Complexes, Transit. Met. Chem., 36(8): 867–874 (2011).
[17] Sava G., Gagliardi R., Bergamo A., Alessio E., Mestroni G., Treatment of Metastases of Solid Mouse Tumours by NAMI-A: Comparison with Cisplatin, Cyclophosphamide and Dacarbazine, Anticancer Res., 19(2A): 969–972 (1999).
[18] Chifotides H.T., Koshlap K.M., Pérez L.M., Dunbar K.R., Novel Binding Interactions of the DNA Fragment d (pGpG) Cross-Linked by the Antitumor Active Compound Tetrakis(μ-Carboxylato)Dirhodium(II, II), J. Am. Chem. Soc., 125(35): 10714–10724 (2003).
[19] Koiri R.K., Trigun S.K., Dubey S.K., Singh S., Mishra L., Metal Cu(II) and Zn(II) Bipyridyls as Inhibitors of Lactate Dehydrogenase, Biometals, 21(2): 117–126 (2008).
[20] Shokohi-Pour Z., Chiniforoshan H., Momtazi-Borojeni A.A. Notash, B., A Novel Schiff Base Derived from the Gabapentin Drug and Copper(II) Complex: Synthesis, Characterization, Interaction with DNA/Protein and Cytotoxic Activity, J. Photochem. Photobiol. B Biol., 162: 34–44 (2016).
[21] Balakrishnan C., Theetharappan M., Kowsalya P., Natarajan S., Neelakantan M.A., Mariappan S.S., Biocatalysis, DNA–Protein Interactions, Cytotoxicity and Molecular Docking of Cu(II), Ni(II), Zn(II) and V(IV) Schiff Base Complexes, Appl. Organomet. Chem., 31(11): e3776 (2017).
[22] Wang Y.-Q., Zhang H.-M., Zhang G.-C., Studies of the Interaction between Palmatine Hydrochloride and Human Serum Albumin by Fluorescence Quenching Method, J. Pharm. Biomed. Anal., 41(3): 1041–1046 (2006).
[23] Peters Jr.T., "All about Albumin: Biochemistry, Genetics, and Medical Applications", Academic Press (1997).
[25] Asadi M., Asadi Z., Zarei L., Sadi S.B., Amirghofran Z., Affinity to Bovine Serum Albumin and Anticancer Activity of some New Water-Soluble Metal Schiff Base Complexes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 133: 697–706 (2014).
[27] Mansouri-Torshizi, H., Zareian-Jahromi, S., Abdi, K., Saeidifar, M., Nonionic but Water Soluble, [Glycine-Pd-Alanine] and [Glycine-Pd-Valine] Complexes. Their Synthesis, Characterization, Antitumor Activities and Rich DNA/HSA Interaction Studies, J. Biomol. Struct. Dyn., 37(13): 3566–3582 (2019).
[28] اسماعیل زایی ز.، صبوری ع.ا.، منصوری ترشیزی ح.، سعیدی فر م.، دیوسالار ع.، مطالعه برهمکنش کمپلکس‌های نیکل (II) دارای لیگاندهای آروماتیک مسطح با DNA غده تیموس، نشریه شیمی و مهندسی شیمی ایران، (2)32: 1 تا 13 (1392).
[29] منصوری ترشیزی ح.، جهانگیری س.، بابایی زارچ م.، خدابخشی کنگان ز.، نزشتی ف.، حیدری مجد م.، تهیه، شناسایی، ویژگی‌های ضدتومور، برهمکنش با DNA و تاثیر بار الکتریکی موجود روی نسبت‌های مولی گوناگون کمپلکس‌های Zn(II):Pd(II) در"ترکیب درمانی" آن‌ها، نشریه شیمی و مهندسی شیمی ایران، (2)36: 55 تا 69 (1396).
[30] Frisch M., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., et al., Gaussian 09, Revision a. 02, Gaussian, Inc., Wallingford, CT, 200: 28 (2009).
[31] Frisch M., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., et al., Petersson., GA; et al, GAUSSIAN 09.
[32] Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., Mainz, D.T., Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes, J. Med. Chem., 49(21): 6177–6196 (2006).
[33] Greenwood J.R., Calkins D., Sullivan A.P., Shelley J.C., Towards the Comprehensive, Rapid, and Accurate Prediction of the Favorable Tautomeric States of Drug-Like Molecules in Aqueous Solution, J. Comput. Aided. Mol. Des., 24(6–7): 591–604 (2010).
[34] Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R.A., The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling, Proteins Struct. Funct. Bioinforma., 79(10): 2794–2812 (2011).
[36] Angelici R.J., "Synthesis and Techniques in Inorganic Chemistry", Saunders, London (1969).
[38] Silverstein R.M., Bassler G.C., Spectrometric Identification of Organic Compounds, J. Chem. Educ., 39(11): 546 (1962).
[40] Sharma Y.R., "Elementary Organic Spectroscopy", S. Chand Publishing (2007).
[41] Khan T.A., Rather M.A., Jahan N., Varkey S.P., Shakir M., Tetraoxotetraamide Macrocyclic Complexes, Transit. Met. Chem., 23(3): 283-285 (1998).
[42] Singh A.K., Panwar A., Singh R., Baniwal S., New Bis-Macrocyclic Complexes with Transition Metal Ions, Transit. Met. Chem., 28(2): 160–162 (2003).
[43] Nakamoto K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Wiley Online Library (1978).
[44] Bellamy L., "The Infra-Red Spectra of Complex Molecules", Springer Science & Business Media (2013).
[46] Takagi H.D., Noda K., Itoh S., Iwatsuki S., Piezochromism and Related Phenomena Exhibited by Palladium Complexes, Platin. Met. Rev., 48(3): 117–124 (2004).
[47] Asadizadeh S., Amirnasr M., Tirani F.F., Mansouri A., Schenk K., DNA-BSA Interaction, Cytotoxicity and Molecular Docking of Mononuclear Zinc Complexes with Reductively Cleaved N2S2 Schiff Base Ligands, Inorganica Chim. Acta, 483: 310–320 (2018).
[48] Alam M.M., Abul Qais F., Ahmad I., Alam P., Hasan Khan R., Naseem I., Multi-Spectroscopic and Molecular Modelling Approach to Investigate the Interaction of Riboflavin with Human Serum Albumin, J. Biomol. Struct. Dyn., 36(3): 795–809 (2018).
[49] Murray J.S., Politzer P., "The Electrostatic Potential: An Overview", Wiley Interdiscip. Rev. Comput. Mol. Sci, 1(2): 153–163 (2011).