Bio-crude production through hydrothermal liquefaction of nannochloropsis microalgae via activated carbon-based catalysts

Document Type : Research Article

Authors

School of Chemistry, College of Science, University of Tehran, Tehran, IRAN

Abstract

In this present study, in order to achieve the high feedstock conversion and maximum yield of bio-crude, the operational parameters of Nannochloropsis sp. microalgae hydrothermal liquefaction process such as temperature(270-310-350ºC), residence time (20-40-60 min) and feedstock ratio percentage (5-10-15 wt%) have been appropriately evaluated .Thereafter, three different activated carbon based catalysts (Co/AC, Zn/AC, Co-Zn/AC) have been manufactured. Catalytic experiments have been carried out on the obtained optimum condition of the HTL process. It has been proved by CHNS and GC-MS results that existence of all three different catalysts has a positive effect on quality and quantity of derived bio-crude, however, because of synergetic effect of Cobalt and Zinc in the bimetallic catalyst, hydrocarbon percentage which is the most favorable portion of achieved bio-crude was increased dramatically. Not only that, but higher mass content of microalgae devoted to bio-crude production (40.12 wt.%) alongside with lower gas and hydrochar percentage.

Keywords

Main Subjects


[1] Wang W., Xu Y., Wang X., Zhang B., Tian W., Zhang J., Bioresource Technology Hydrothermal Liquefaction of Microalgae Over Transition Metal Supported TiO2 Catalyst, Bioresour. Technol., 250: 474–480 (2018).
[2] کریمی ع.، توسلی ا.، جعفریان س.، گازی‌سازی نانوکاتالیستی زیست‌توده باگاس به گاز غنی از هیدروژن با ریفرمینگ با بخار آب، نشریه شیمی و مهندسی شیمی ایران، (39)98: 249 تا 260 (1399).
[3] شامی ط.، بهشتی ب.، زنوزی ع.، الماسی م.، تولید بایودیزل از زیست توده ریزجلبک بومی ایران، نشریه شیمی و مهندسی شیمی ایران، (40)101: 373 تا 386 (1400).
[4] Galadima A., Muraza O., Hydrothermal Liquefaction of Algae and Bio-Oil Upgrading into Liquid Fuels: Role of Heterogeneous Catalysts, Renew. Sustain. Energy Rev., 81: 1037–1048 (2018).
[5] Ross A.B., Biller P., Kubacki M.L., Li H., Jones J.M., Hydrothermal Processing of Microalgae Using Alkali and Organic Acids, Fuel, 89(9):  2234–2243 (2010).
[6] Chen Y., Rentao M., Mingde Y., Lina F., Yulong W., Kejing W., Ya L., Jinlong G., Catalytic Hydrothermal Liquefaction for Bio-Oil Production over CNTs Supported Metal Catalysts, Chem. Eng. Sci., 161: 299–307 (2017).
[7] Koley S., Khadase M.S., Mathimani T., Raheman H., Mallick N., Catalytic and non-Catalytic Hydrothermal Processing of Scenedesmus Obliquus Biomass for Bio-Crude Production – A Sustainable Energy Perspective, Energy Convers. Manag., 163: 111–121 (2018).
[8] Environ E., Duan P., Savage P.E., Catalytic Treatment of Crude Algal Bio-Oil in Supercritical Water : Optimization Studies, Energy & Environmental Science, 4: 1447–1456 (2011).
[9] Biller P., Sharma B.K., Kunwar B., Ross A.B., Hydroprocessing of Bio-Crude from Continuous Hydrothermal Liquefaction of Microalgae, Fuel, 159: 197–205 (2015).
[10] Bai X., Duan P., Xu Y., Zhang A., Savage P.E., Hydrothermal Catalytic Processing of Pretreated Algal oil : A Catalyst Screening Study, FUEL, 120: 141–149 (2014).
[11] Cheng S., Quitain A.T., Yusup S., Sasaki M., Uemura Y., Kida T., The Journal of Supercritical Fluids Metal Oxide-Catalyzed Hydrothermal Liquefaction of Malaysian Oil Palm Biomass to Bio-Oil under Supercritical Condition, J. Supercrit. Fluids, 120: 384–394 (2017).
[14] Achouri I.E., Abatzoglou N., Fauteux-Lefebvre C., Braidy N., Diesel Steam Reforming: Comparison of Two Nickel Aluminate Catalysts Prepared by Wet-Impregnation and co-Precipitation, Catal. Today, 207: 13–20 (2013).
[15] Biller P., Riley R., Ross A.B., Catalytic Hydrothermal Processing of Microalgae: Decomposition and Upgrading of Lipids, Bioresour. Technol., 102(7): 4841–4848 (2011).
[16] Xu Y., Wang Z., Tan L., Yan H., Zhao Y., Duan H., Song Y-F., Interface Engineering of High-Energy Faceted Co3O4/ZnO Heterostructured Catalysts Derived from Layered Double Hydroxide Nanosheets, Ind. Eng. Chem. Res., 57: 5259−52670 (2018).
[17] Cai H., Zhang D., Ma X., Ma Z., A Novel ZnO/Biochar Composite Catalysts for Visible Light Degradation of Metronidazole, Separation and Purification Technology, 288: 120633 (2022).
[18] Gollakotaa A.R.K., Kishoreb N., Gu S., A Review on Hydrothermal Liquefaction of Biomass, Renewable and Sustainable Energy Reviews, 81: 1378-1392 (2017).
[19] Xue Y., Chen H., Zhao W., Yang C., Ma P., Han S., A Review on the Operating Conditions of Producing Bio-Oil from Hydrothermal Liquefaction of Biomass, International Journal of Energy Research, 40(7): 865-877 (2015).
[20] Tekin K., Karagöz S., Non-Catalytic and Catalytic Hydrothermal Liquefaction of Biomass, Res. Chem. Intermed., 39: 485–498 (2013).
[21] Akhtar J., Amin N.A.S., A Review on Process Conditions for Optimum Bio-Oil Yield in      Hydrothermal Liquefaction of Biomass, Renewable and Sustainable Energy Reviews, 15(3): 1615-1624 (2011).