Absorption of Carbon Dioxide in Aqueous Solution of Protic Ionic Liquid [MEA][Gly]: Experimental Study and Model Fitting

Document Type : Research Article

Authors

Chemical Engineering Department, Kermanshah University of Technology, Kermanshah, I.R. IRAN

Abstract

Relatively high viscosity of protic ionic liquids limits their industrial applications in carbon dioxide separation processes. For this purpose, the performance of equilibrium absorption of CO2 in aqueous solution of ionic liquid functionalized with amino acid glycine named monoethanolamine glycinate, [MEA][Gly], was investigated in the temperature range of 303.15-15 323 K and various equilibrium pressures. The results demonstrated that at a constant temperature of 313.15 K, by increasing the presence of water in the solution from 80 to 95 wt%, the CO2 absorption capacity enhances from 1.36 to 2.24 (mol CO2 / mol IL), which is equivalent to 64 % augmentation in CO2 loading. Besides, utilizing a quadratic equation, numerical values of CO2 loading in terms of carbon dioxide partial pressure were developed for all the studied solvent concentrations, so that the calculated results were in good agreement with the values obtained from the experiments. The measurement of the density and viscosity of [MEA][Gly] solution, in the temperature range of 15.303 to 15.323 K, illustrated that as the amount of water in the solution declines, their corresponding values increase dramatically. Applying the empirical correlations, the values of density and viscosity were estimated in terms of temperature and mole fractions. Moreover, Clausius-Clapeyron equation was employed to compute the heat of CO2 absorption into the aqueous solution of [MEA][Gly]. Finally, although [MEA][Gly] is introduced as a novel absorbent in CO2 separation processes, high concentrations of this solvent is not suitable for carbon dioxide capture and separation, mainly due to its high viscosity.

Keywords

Main Subjects


[1] بنیادی م.، درست م.، شریفی فرد ح.، بررسی آزمایشگاهی تاثیر نانوسیال دارای نانوذره‌های کربن فعال در جذب دی‌اکسیدکربن، نشریه شیمی و مهندسی شیمی ایران، (1)41: 153 تا 163 (1401).
[2] رستگار ز.، قائمی ا.، شیروانی م.، مطالعه تجربی جذب کربن‌دی‌اکسید با استفاده از محلول آبی پتاسیم هیدروکسید، نشریه شیمی و مهندسی شیمی ایران، (1)40: 115 تا 126 (1400).
[3] علی وردی پور س.، شکوهی م.، سخائی نیا ح.، بررسی اثر افزایش سولفولان در آنتالپی جذب و دفع H2S در محلول‌های آبی متیل دی اتانول آمین با استفاده از داده‌های حلالیت، نشریه شیمی و مهندسی شیمی ایران، (1)40: 127 تا 146 (1400).
[5] Shamiri A., Shafeeyan M., Tee H., Leo C., Aroua M., Aghamohammadi N., Absorption of CO2 into Aqueous Mixtures of Glycerol and Monoethanolamine, Journal of Natural Gas Science and Engineering, 35: 605-613 (2016).
[6] Usman M., Huang H., Li J., Hillestad M., Deng L., Optimization and Characterization of an Amino Acid Ionic Liquid and Polyethylene Glycol Blend Solvent for Precombustion CO2 Capture: Experiments and Model Fitting, Industrial & Engineering Chemistry Research, 55(46): 12080-12090 (2016).
[7] کامیاب مقدس ب.، کاویانی س.، مدل‌سازی عملیات جداسازی دی اکسید کربن از مخلوط گازی توسط غشای الیاف توخالی پلی پروپیلن در حضور مایع یونی [4EtSO][Emim]، نشریه شیمی و مهندسی شیمی ایران، (3)40: 175 تا 186 (1400).
[10] Yu K.M.K., Curcic I., Gabriel J., Tsang S.C.E., Recent Advances in CO2 Capture and Utilization, Chemistry & Sustainability Energy & Materials, 1(11): 893-899 (2008).
[11] Feng Z., Cheng-Gang F., You-Ting W., Yuan-Tao W., Ai-Min L., Zhi-Bing Z., Absorption of CO2 in the Aqueous Solutions of Functionalized Ionic Liquids and MDEA, Chemical Engineering Journal, 160(2): 691-697 (2010).
[12] Rayer A.V., Sumon K.Z., Sema T., Henni A., Idem R.O., Tontiwachwuthikul P., Part 5c: Solvent Chemistry: Solubility of CO2 in Reactive Solvents for Post-Combustion CO2, Carbon Management, 3(5): 467-484 (2012).
[13] Lu J.-G., Lu Z.-Y., Cao S., Gao L., Gao X., Wang J.-T., Tang Y.-Q.,  Chen Y.,  Synthesis, Characterization, Physical Properties, and CO2 Absorption Performance of Monoethanolamine Glycinate Ionic Liquid, Journal of Solution Chemistry, 44(10): 1997-2007 (2015).
[14] Lu J.-G., Ge H., Chen Y., Ren R.-T., Xu Y., Zhao Y.-X., Zhao X., Qian H., CO2 Capture using a Functional Protic Ionic Liquid by Membrane Absorption, Journal of the Energy Institute, 90(6): 933-940 (2017).
[15] Jouyban A., Mirheydari S.N., Barzegar-Jalali M., Shekaari H., Acree W.E., Comprehensive Models for Density Prediction of Ionic Liquid+Molecular Solvent Mixtures at Different Temperatures, Physics and Chemistry of Liquids, 58(3): 309-324 (2020).
[16] Chen B.-K., Liang M.-J., Wu T.-Y., Wang H.P., A High Correlate and Simplified QSPR for Viscosity of Imidazolium-based Ionic Liquids, Fluid Phase Equilibria, 350: 37-42 (2013).
[17] Bini R., Malvaldi M., Pitner W.R., Chiappe C., QSPR Correlation for Conductivities and Viscosities of Low‐Temperature Melting Ionic Liquids, Journal of Physical Organic Chemistry, 21(7‐8): 622-629 (2008).
[18] Geng T., Duan S., Jiang Y., Ju H., Wang Y., Viscosity, Electrical Conductivity, Density and Surface Tension of Methyltriphenylphosphonium Carboxylate Ionic Liquids, Bulletin of the Chemical Society of Japan, 92(3): 578-584 (2019).
[20] Akbari M., Valeh-e-Sheyda P., CO2 Equilibrium Solubility in and Physical Properties for Monoethanolamine Glycinate at Low Pressures, Process Safety and Environmental Protection, 132: 116-125 (2019).
[21] Ma J.-W., Zhou Z., Zhang F., Fang C.-G., Wu Y.-T., Zhang Z.-B.,  Li A.-M., Ditetraalkylammonium Amino Acid Ionic Liquids as CO2 Absorbents of High Capacity, Environmental Science & Technology, 45(24): 10627-10633 (2011).
[22] Cai D., Saengprachum N., Lin Z., Qiu T., Thermophysical Properties of 4-Dimethylaminopyridine based Ionic Liquids, Journal of Molecular Liquids, 297: 111875 (2020).
[23] Aronu U., Amine and Amino Acid Absorbents for CO2 Capture, Ph.D. Dissertation,  Norwegian University of Science and Technology, (2011).
[24] Lu J.-G., Fan F., Liu C., Zhang H., Ji Y., Chen M.-D., Density, Viscosity, and Surface Tension of Aqueous Solutions of Potassium Glycinate + Piperazine in the Range of (288.15 to 323.15) K, Journal of Chemical & Engineering Data, 56(5): 2706-2709 (2011).
[25] Carroll J.J., Slupsky J.D., Mather A.E., The Solubility of Carbon Dioxide in Water at Low Pressure, Journal of Physical and Chemical Reference Data, 20(6): 1201-1209 (1991).
[26] Shiflett M.B., Yokozeki A., Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids:[bmim][PF6] and [bmim][BF4], Industrial & Engineering Chemistry Research, 44(12): 4453-4464 (2005).
[27] Chen Y., Guo K., Bi Y., Zhou L., Phase Equilibrium of (CO2+ 1-Aminopropyl-3-Methylimidazolium Bromide+ Water) Electrolyte System and Effects of Aqueous Medium on CO2 Solubility: Experiment and Modeling, The Journal of Chemical Thermodynamics, 107: 65-78 (2017).