Investigation of nickel adsorption from aqueous solutions using orange peel carbon

Document Type : Research Article

Authors

Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, IRAN

Abstract

In this research, the adsorption of nickel ions in the batch system by orange peel carbon has been investigated and the effect of factors such as pH, contact time, initial concentration of nickel in solution, adsorbent amount, and the temperature has been considered. The surface details and functional groups were investigated by SEM and FTIR analyzes, respectively. In the study of the effect of pH, the highest percentage of nickel uptake for orange peel carbon occurred at pH = 6, which is equivalent to 58 mg/g. With increasing the contact time between the adsorbent and the solution and after 210 minutes, the adsorption percentage increased to 98.57%. In the study of the effect of the initial concentration of nickel in the range of 20 to  150 mg/L, the results showed that with increasing concentration, the percentage of adsorption decreased from 98% to 96%, and with increasing the amount of adsorbent from 0.01 to 0.1 g per 25 ml. Nickel solution, the adsorption percentage increased from 90% to 98%. The effect of temperature showed that with increasing the temperature from 25 to 45°C, the percentage of adsorption decreased from 99% to 97.8%. Thermodynamic properties were studied at three temperatures of 25, 35, and 45°C. The negative free energy value of the standard Gibbs (∆ Go) which is equivalent to -121.3 kJ / mol, indicates that the adsorption process is spontaneous and physical. In the kinetic study of the contact time effect, it was observed that the results fit well with the second-order kinetic model with a correlation coefficient of 99%. In investigating the effect of the initial concentration of nickel in solution and fitting experimental data with Langmuir, Freundlich, Temkin, Dubin Radushkovich isotherms, and according to the values ​​obtained at R2, Freundlich's isotherm had the highest compatibility with 100% correlation coefficient.

Keywords

Main Subjects


[1] Emsley J., ''Nature's Building Blocks: An AZ Guide to the Elements''. Oxford University Press Jericho (2011).
[2] Deng Y., Huang S., Dong C., Meng Z., Wang X., Competitive Adsorption Behaviour and Mechanisms of Cadmium, Nickel and Ammonium from Aqueous Solution by Fresh and Ageing Rice Straw Biochars. Bioresour. Technol.  303(1): 1-39 (2020).
[3] یعقوب م.، عیسی ک.د.، علی گ.ف.، "تصفیه آب و پساب". انتشارات منشور سیدی، (1384).
[4] Liu W., Zhang M., Liu X., Jiao J., Zhu H., Zhou Z., Ren Z., Preparation of Surface Ion-Imprinted Materials Based on Modified Chitosan for Highly Selective Recognition and Adsorption of Nickel Ions in Aqueous Solutions. Ind. Eng. Chem. 59(13): 6033-6042 (2020).
[5] Yazidi A., Sellaoui L., Badawi M., Dotto G.L., Bonilla-Petriciolet A., Lamine A.B., Erto A., Ternary Adsorption of Cobalt, Nickel and Methylene Blue on a Modified Chitin: Phenomenological Modeling and Physical Interpretation of the Adsorption Mechanism. Int. J. Biol. Macromol. 158(1): 595-604 (2020).
[6] Zheng Y., Cheng B., Fan J., Yu J., Ho W., Review on Nickel-Based Adsorption Materials for Congo Red. J. Hazard. Mater. 403(1): 1-64 (2020).
[7] Ajmal M., Rao  R., Ahmad  R., Ahmad  J., Adsorption Studies on Citrus Reticulata (Fruit Peel of Orange): Removal and Recovery of Ni (II) from Electroplating Wastewater. J. Hazard. Mater. 79(2): 117-131 (2000).
[8] Habib A., Islam N., Islam A., Alam  A.M., Removal of Copper from Aqueous Solution using Orange Peel, Sawdust and Bagasse. Pakistan Pak. J.Anal. Environ. Chem. 8(1): 1-6 (2007).
[10] Liang S., Effective Removal of Heavy Metals from Aqueous Solutions by Orange Peel Xanthate. Trans. Nonferrous Met. Soc. 20(1): 187-191 (2010).
[12] Chen Y., Wang  H., Zhao W., Huang  S., Four different kinds of peels as adsorbents for the Removal of Cd (II) from Aqueous Solution: Kinetics, Isotherm and Mechanism. J. Taiwan. Inst. Chem. Eng. 88: 146-151 (2018).
[13] Villabona-Ortiza Á., Tejada-Tova C., González-Delgado A.D.,  Herrera-Barros A.H., Silvera-Charris R., Removal of Cr (VI) Ions from Aqueous Solution using Orange Peel Residual Biomass: Thermodynamic and Sorption–Desorption Study. Desalination Water Treat. 203(1): 309-314 (2020).
[14] Mousavi S.V., Bozorgian A., Mokhtari N., Gabris M.A., Nodeh H., Ibrahim W., A Novel Cyanopropylsilane-Functionalized Titanium Oxide Magnetic Nanoparticle for the Adsorption of Nickel and Lead Ions from Industrial Wastewater: Equilibrium, Kinetic and Thermodynamic Studies. Microchem. J. 145(1): 914-920 (2019).
[16] Al-atabe M.J.A., Hussein A.A., Adsorption of Nickel Ions from Aqueaus Solution Using Natural Clay. NJES. 21(2): 223-229 (2018).
[18] حسین ق.گ.، علی ق.گ.، و پریسا آ.، بررسی جذب فنل از محلول های آبی با استفاده از کربن هسته انار، نشریه شیمی و مهندسی شیمی ایران، 36(4): 145-159 (1399).
[19] معصومی ح.، ردایی س.، قنادزاده گیلانی ح.، بررسی کارایی زئولیت کلینوپتیلولیت طبیعی در حذف منیزیم از محلول‌های آبی، نشریه شیمی و مهندسی شیمی ایران ، 40(4): 55-73 (1400).
[20] Nicomel N.R., Otero-Gonzalez L., Folens K., Mees B.,  Hennebel T., Laing G.D., Selective and Enhanced Nickel Adsorption from Sulfate-and Calcium-Rich Solutions Using Chitosan. Sep. Purif. Technol. 276(1): 1-10 (2021).
[21] Li J., Wei C., Gui Y., Yunxia Z., Quing Y., Effect of Chemical Treatment on Morphology, Structure and Properties of Peanut Shells. Asian J. Chem. 27(2): 477-481 (2015).
[22] Maddodi S.A., Alalwan H., Alminshid A., N.Abbas M., Isotherm and Computational Fluid Dynamics Analysis of Nickel Ion Adsorption from Aqueous Solution Using Activated Carbon. S. Afr. J. Chem. Eng. 32(1): 5-12 (2020).
[23] Kumari S., Khan A., Chowdhury A., Bhakta A., Mekhalif Z., Hussain S., Efficient and Highly Selective Adsorption of Cationic Dyes and Removal of Ciprofloxacin Antibiotic by Surface Modified Nickel Sulfide Nanomaterials: Kinetics, Isotherm and Adsorption Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 586(1): 1-41 (2020).
[25] معصومی ح.، قنادزاده گیلانی ح.، اثر نمک ­های فسفات در استخراج مالیک اسید به وسیله­ ی سامانه ­ی دو فازی آبی، نشریه شیمی و مهندسی شیمی ایران، 39(4): 167-175 (1400).
[26] معصومی ح.، جنگجوی شالدهی ط.، قنادزاده گیلانی ح.، بررسی عامل‌های مؤثر بر سامانه دو فازی دارای پلی اتیلن گلیکول4000 گرم بر مول و نمک‌های فسفات در استخراج مالیک اسید، نشریه شیمی و مهندسی شیمی ایران، 39(4): 177-184 (1400).