DFT Study of Electric Field Effect on the Adsorption of Some Nitroaromatic Compounds on the Surface of Zinc Oxide Nanotube

Document Type : Research Article


1 Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN

2 Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN


In this research, the adsorption process of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, tetryl and nitrobenzene on the surface of (8,0) ZnO NanoTube (NT) and the effect of the external electric field on the adsorption properties have been investigated using density functional theory. The results show that these molecules are adsorbed on the ZnO NT with adsorption energies of -61.7, -54, -110.7 and -61.7 kJ/mol, respectively. Also, the energy gap of the tube increased more than 0.5eV after adsorption process. It suggests that the adsorption of these nitroaromatic molecules can induce a significant change in the electrical conductivity of the tube, which shows the potential application of (8, 0) ZnO NT for sensing of the studied molecules. The obtained results of applying the external electric field on the adsorption process of these nitroaromatic compounds showed that the adsorption energy and the energy gap can be controlled by the engineering of electric field strength and direction. 


Main Subjects

[1] Wu Y.L., Tok A.me.Y., Boey F.Y.C., Zeng X.T., Zhang X.H., Surface Modification of ZnO Nanocrystals, Applied Surface Science, 253: 5473-5479 (2007).
[2] Prades J.D., Cirera, A., Morante J.R., Abinitio Calculations of NO2 and SO2 Chemisorption onto Non-Polar ZnO Surfaces, Sensors and Actuators B: Chemical, 142: 179-184 (2009).
[3] Vayssieres L., Keis K., Hagfeldt A., Lindquist S.E., Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chemistry of Materials, 13: 4395–4398 (2001).
[4] Katwal G., Maggie P., Irene A.R., James E.M., Oomman K.V., Rapid Growth of Zinc Oxide Nanotube–Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection, Nano Letter, 16: 3014-3021 (2016).
[5] Li Y., Liu K., Li W.J., Guo A., Zhao F.Y., Liu H., Ruan W.J., Coordination Polymer Nanoarchitecture for Nitroaromatic Sensing by Satic Quenching Mechanism, The Journal of Physical Chemistry C, 119: 28544–28550 (2015).
[6] Wang H., Xu X., Lee C., Johnson C., Sohlberg K., Ji H.F., Highly Selective Sensing of Nitroaromatics Using Nanomaterials of Ellagic Acid, The Journal of Physical Chemistry C, 116: 4442–4448 (2012).
[8] Akhavan J., “The Chemistry of Explosives", 2nd ed., Cambridge. Royal Society of Chemistry, (2004).
[9] Beauchamp R.O.Jr., Irons R.D., Rickert D. E., Couch, D, B., Hamm, T. E., A Critical Review of the Literature on Nitrobenzene Toxicity, Critical Reviews in Toxicology, 11: 33-84 (1982). 
[10] Foroutan-Nejad C., Andrushchenko V., Straka M., Dipolar Molecules Inside C70: An Electric Field-Driven Room-Temperature Single-Molecule Switch, Physical Chemistry Chemical Physics, 18: 32673-32677 (2016).
[12] Meir R., Chen H., Lai W., Shaik S., Oriented Electric Fields Accelerate Diels–Alder Reactions and Control the endo/exo Selectivity, Chem Phys Chem, 11: 301-310 (2010).
[13] Novák M., Foroutan-Nejad C., Marek R., Comment on Some Unexpected Behavior of the Adsorption of Alkali Metal Ions onto the Graphene Surface under the Effect of External Electric Field, The Journal of Physical Chemistry C, 119: 5752-5754 (2015).
[14] Farmanzadeh D., Tabari L., Electric Field Effects on the Adsorption of Formaldehyde Molecule on the ZnO Nanotube Surface: A Theoretical Investigation, Computational and Theoretical Chemistry, 1016: 1-7 (2013).
[16] Delley B., From Molecules to Solids wif the DMol(3) Approach, The Journal of Chemical Physics, 113: 7756-7764 (2000).
[17] Parr R.G., Yang W., "Density-Functional Theory of Atoms and Molecules", Oxford University Press: New York (1994).
[18] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Physical Review Letters, 77: 3865-3868 (1996).
[19] Song D.M., Li J.C., First Principals Study of Band Gap of Cu Doped ZnO Single-Wall Nanotube Modulated by Impurity Concentration and Concentration Gradient, Computational Materials Science, 65: 175-181 (2012).
[20] Xu H., Zhang R.Q., Zhang X., Rosa A.L., Frauenheim Th., Structural and Electronic Properties of ZnO Nanotubes from Density Functional Calculations, Nanotechnology, 18: 485713 (2007).
[21] Li S., "Semiconductor Physical Electronics", 2nd ed., USA, Springer. (2006).
[22] Novák M., Foroutan-Nejad C., Marek R., Solvent Effects on Ion–Receptor Interactions in the Presence of an External Electric Field, Physical Chemistry Chemical Physics, 18: 30754-30760 (2016).
[23]  دیده‌ بان، خدیجه؛ اکبری، مینا؛ عادل خانی، هادی؛ مطالعه رفتار کامپوزیت پلی آکریل آمید-روی اکسید به عنوان الکترود در ابرخازن های الکتروشیمیایی، نشریه شیمی و مهندسی شیمی ایران، (2)34: 41 تا 46 (1394).
[24]  تارقلی، احسان؛ موسوی خوشدل، سید مرتضی؛ رحمانی‌فر، محمدصفی؛ تأثیر نقص‌های ساختاری در گرافن عامل‌دار شده با گروه عاملی –COOH در کارایی ابرخازن پایه گرافنی، نشریه شیمی و مهندسی شیمی ایران، (3)35: 33 تا 42 (1395).