Ag-Nanowire Diffusion into the Carbon Nanotube: an Efficient Method for Anti-Cancer Drug Release

Document Type : Research Article

Authors

Department of Chemistry, Hakim Sabzevari University, Sabzevar, I.R. IRAN

Abstract

In this study, release mechanism of cisplatin anti-cancer drug inside Single-Walled Carbon NanoTube (SWCNT) through Ag-nanowire diffusion and also, the effects of nanotube diameter and temperature on the rate of release process was investigated via Molecular Dynamics (MD) simulation. The results showed that the van der Waals interaction between the Ag-nanowire and the SWCNT act as the driving force for the drug release which the highest of the release rate of cisplatin was observed in the body temperature and in the SWCNT with a larger diameter. Finally, the kinetics of drug release is fast and not related to the structural parameters of the nanotube and temperature, significantly

Keywords

Main Subjects


[1] Rosenberg B., Van Camp L., Krigas T.,  Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode, Nature, 205(4972): 698-699 (1965).
[2] Rosenberg B., Vancamp L., Platinum Compounds: a New Class of Potent Antitumour Agents, Nature, 222: 385-386 (1969).
[3] Hambley TW., The Influence of Structure on the Activity and Toxicity of Pt Anti-Cancer Drugs, Coordination Chemistry Reviews, 166:181-223 (1997).
[4] Wong E., Giandomenico CM., Current Status of Platinum-Based Antitumor Drugs, Chemical Reviews, 99(9): 2451-2466 (1999).
[5] Lopes J.F., de A. Menezes V.S., Duarte H.A., Rocha W.R., De Almeida W.B., Dos Santos H.F., Monte Carlo Simulation of Cisplatin Molecule in Aqueous Solution, The Journal of Physical Chemistry B, 110(24): 12047-12054 (2006).
[6] O’Dwyer P.J., Stevenson J.P., Johnson S.W., Clinical Status of Cisplatin, Carboplatin, and other Platinum-Based Antitumor Drugs, Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, 31-69 (1999).
[7] Park K., Nanotechnology: What it Can Do for Drug Delivery,  Journal of Controlled Release: Official Journal of the Controlled Release Society, 120(1-2): 1 (2007).
[8] Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O., Nanoparticles in Medicine: Therapeutic Applications and Developments, Clinical Pharmacology & Therapeutics, 83(5): 761-769 (2008).
[9] Hughes GA., Nanostructure-Mediated Drug Delivery, Nanomedicine: Nanotechnology, Biology, and Medicine, 1(1): 22-30 (2005).
[10] De Jong W.H., Borm P.J., Drug Delivery and Nanoparticles: Applications and Hazards, International Journal of Nanomedicine, 3(2): 133 (2008).
[11] Cao Q., Han S-j., Penumatcha AV., Frank MM., Tulevski GS., Tersoff J.,  Haensch W. E., Origins and Characteristics of the Threshold Voltage Variability of Quasiballistic Single-Walled Carbon Nanotube Field-Effect Transistors, ACS Nano, 9(2): 1936-1944 (2015).
[12] Shokrieh M., Rafiee R., A review of the Mechanical Properties of Isolated Carbon Nanotubes and Carbon Nanotube Composites, Mechanics of Composite Materials, 46(2): 155-172 (2010).
[13] Gong F., Duong HM., Papavassiliou DV., Inter-Carbon Nanotube Contact and Thermal Resistances in Heat Transport of Three-Phase Composites, The Journal of Physical Chemistry C, 119(14): 7614-7620 (2015).
[14] Saito R., Dresselhaus M.S., “Optical Properties of Carbon Nanotubes,Carbon Nanotubes and Graphene”, 2nd ed., Elsevier, Oxford, 77-98 (2014).
[15] Pantarotto D., Briand J-P., Prato M., Bianco A., Translocation of Bioactive Peptides Across Cell Membranes by Carbon Nanotubes, Chemical Communications, 1: 16-17 (2004).
[16] Lacerda L., Raffa S., Prato M., Bianco A., Kostarelos K., Cell-Penetrating CNTs for Delivery of Therapeutics, Nano Today, 2(6): 38-43(2007).
[17] Li J., Yap S. Q., Yoong S. L., Nayak T. R., Chandra G. W., Ang W. H., Panczyk T., Ramaprabhu S., Vashist S. K., Sheu F.-S., Carbon Nanotube Bottles for Incorporation, Release and Enhanced Cytotoxic Effect of Cisplatin, Carbon, 50(4): 1625-1634 (2012).
[18] Martincic M., Tobias G., Filled Carbon Nanotubes in Biomedical Imaging and Drug Delivery, Expert Opinion on Drug Delivery, 12(4): 563-581(2015).
[19] Vashist SK., Zheng D., Pastorin G., Al-Rubeaan K., Luong JH., Sheu F-S., Delivery of Drugs and Biomolecules Using Carbon Nanotubes, Carbon, 49(13): 4077-4097 (2011).
[20] Zhang W., Zhang Z., Zhang Y., The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies, Nanoscale Research Letters,  6(1): 555 (2011).
[21] Su Z., Zhu S., Donkor A.D., Tzoganakis C., Honek J.F., Controllable Delivery of Small-Molecule Compounds to Targeted Cells Utilizing Carbon Nanotubes, Journal of the American Chemical Society, 133(18): 6874-6877 (2011).
[22] Raoof M., Cisneros B.T., Guven A., Phounsavath S., Corr S.J., Wilson L.J., Curley S.A., Remotely Triggered Cisplatin Release from Carbon Nanocapsules by Radiofrequency Fields, Biomaterials, 34(7): 1862-1869 (2013).
[23] Sanz V., Tilmacîu C., Soula B., Flahaut E., Coley H. M., Silva S.R.P., McFadden J., Chloroquine-Enhanced Gene Delivery Mediated by Carbon Nanotubes, Carbon, 49(15): 5348-5358 (2011).
[24] Luo X., Matranga C., Tan S, Alba N., Cui X.T., Carbon Nanotube Nanoreservior for Controlled Release of Anti-Inflammatory Dexamethasone, Biomaterials, 32(26): 6316-6323 (2011).
[25] امیدی، مرضیه؛ شجاع الساداتی، سید عباس؛ مرسلی، علی؛ بررسی بار گذاری و رهایش کنترل شده­ی یک داروی ضد آریتمی قلبی در یک چارچوب فلز ـ آلی، نشریه شیمی و مهندسی شیمی ایران، (2)33:21 تا 25 (1393).
[26] سروش­نیا، آرزو؛ گنجی، فریبا؛ تقی­زاده، سید مجتبی؛ تاثیر متغیرهای فرمول­بندی بر عبور پوستی میکروامولسیون دسموپرسین استات، نشریه شیمی و مهندسی شیمی ایران، (2)33: 27 تا 32 (1393).
[27] Chaban V.V., Prezhdo O.V., Water Boiling Inside Carbon Nanotubes: Toward Efficient Drug Release, ACS Nano, 5: 5647 (2012).
[28] Panczyk T., Jagusiak A., Pastorin G., Ang WH., Narkiewicz-Michalek J., Molecular Dynamics Study of Cisplatin Release from Carbon Nanotubes Capped by Magnetic Nanoparticles, The Journal of Physical Chemistry C, 117(33): 17327-17336 (2013).
[29] Saikia N., Jha AN., Deka RC., Dynamics of Fullerene-Mediated Heat-Driven Release of Drug Molecules from Carbon Nanotubes, The Journal of Physical Chemistry Letters, 4(23): 4126-4132 (2013).
[30] Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J., The Bactericidal Effect of Silver Nanoparticles, Nanotechnology, 16(10): 2346 (2005).
[31] Hilder T.A., Hill J.M., Modelling the Encapsulation of the Anticancer Drug Cisplatin into Carbon Nanotubes, Nanotechnology, 18(27): 275704 ( 2007).
[32] Lopes J.F., de A. Menezes V.S., Duarte H.A., Rocha W.R., De Almeida W.B., Dos Santos H.F., Monte Carlo Simulation of Cisplatin Molecule in Aqueous Solution, The Journal of Physical Chemistry B, 110(24): 12047-12054 (2006).
[33] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., Comparison of Simple Potential Functions for Simulating Liquid Water, The Journal of Chemical Physics, 79(2): 926-935 (1983).
[34] Smith W., Todorov I.T., A Short Description of DL_POLY, Molecular Simulation, 32: 935-943 (2006).
[35] Nose S., Constant-Temperature Molecular Dynamics, Journal of Physics: Condensed Matter, 2(S):115 (1990).
[36] Hoover W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Physical Review A, 31(3):  1695 (1985).
[37] Allen M. P., Tildesley D. J.,“Computer Simulation of Liquids”, Oxford: Clarendon (1991).
[38] Çağin T., Kimura Y., Qi Y., Li H., Ikeda H., Johnsonb W.L., Goddard W.A., “Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers, Materials Research Society Symposium Proceedings, 554: 43 (1999).
[39] Qi Y., Çağin T., Kimura Y., Goddard WA.,Viscosities of Liquid Metal Alloys from Nonequilibrium Molecular DynamisJournal of Computer-Aided Molecular Design, 8: 233-243 (2001).
[40] Lennard-Jones JE., “Cohesion”, Proceedings of the Physical Society,43(5): 461 (1931).