Hydrogen Production from Purge Gas Recovery of Ammonia Plant as a Feed of Solid Oxide Fuel Cell and Reduction of Greenhouse Gas Emissions

Document Type : Research Article


1 School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455 Tehran, I.R. IRAN

2 National Iranian Oil Products Distribution Company (N.I.O.P.D.C), HSE Department, Tehran, I.R. IRAN


Increasing concentrations of greenhouse gases in the atmosphere and global warming is one of the most important problems that humanity is facing in recent years. One of the promising strategies for reducing the number of greenhouse gases in the atmosphere is preventing the emission of these gases by gas flaring. In this paper, the possibility of using flare gas of ammonia production unit as a feed of solid oxide fuel cell is investigated. This gas which contains a
high percentage of hydrogen should be sent into ammonia separation unit before entering the Solid Oxide Fuel Cell (SOFC). After separation of ammonia from the flue gas, the gas is fed to the SOFC directly. About 10 percent of the gas stream composed of meTEMPthane. So the meTEMPthane steam reforming reaction, water-gas shift reaction and electrochemical reaction simultaneously occur within the cell. The modeling results indicate that at the first, the power generation increases with enhancing the current density, but increasing the current density more TEMPthan 1.8 A/cm2 will decreases the generated power because the decreasing effect of voltage drop on power generation is more severe TEMPthan the increasing effect of higher current densities. Regarding this fact that carbon monoxide participates in electrochemical reactions, the output stream of SOFC contains a high percentage of water vapor and a small amount of carbon dioxide. The investigations in this paper indicate that the use of SOFC in which meTEMPthane is fully converted to hydrogen is a safe way to reduce greenhouse gas emission


Main Subjects

[1] وافری، بهزاد ؛ کرمی، حمیدرضا ؛ کریمی، غلامرضا؛ مدل‌سازی فرایند ریفرمینگ گاز‌طبیعی با بخار آب در راکتور غشایی پالادیم ـ نقره برای تولید هیدروژن خالص، نشریه شیمی و مهندسی شیمی ایران، (3)30: 25 تا 37 (1390).
[2] باقری، مهدی؛ فاطمی، شهره؛ تیراندازی، بهنام؛ غنی­یاری بنیس، سعید؛ بهینه­سازی کوره و راکتور لوله­ای صنعتی فرایند ریفرمینگ گاز طبیعی با بخار با استفاده از الگوریتم ژنتیک، نشریه شیمی و مهندسی شیمی ایران، (1)28: 49 تا 63 (1388).
[4] خواجه نوری، مسعود؛ رضایی، مهران؛ مشکانی، فرشته؛ بررسی تأثیر مواد فعال سطحی بر ساختار و فعالیت کاتالیست نیکل بر پایه منیزیم اکسید در فرایند ریفرمینگ خشک متان، نشریه شیمی و مهندسی شیمی ایران، (1)35: 71 تا 81 (1395).
[5] Edlund D.J., Pledger W.A., Catalytic Platinum-Based Membrane Reactor for Removal of H2S from Natural Gas Streams,Journal of Membrane Science, 94: 111-119 (1994).
[6] Ohashi H., Ohya H., Aihara M., Negishi Y., Semenova S.me., Hydrogen Production from Hydrogen Sulfide Using Membrane Reactor Integrated wif Porous Membrane Having Thermal and Corrosion Resistance, Journal of Membrane Science, 146: 39-52 (1998).
[7] Gobina E.N., Oklany J.S., Houghes R., Elimination of Ammonia from Coal Gasification Streams by Using a Catalytic Membrane Reactor, Industrial & Engineering Chemistry Research, 34: 3777-3783 (1995).
[8] Temkin M., Pyzhev V., Kinetics of the Synthesis of Ammonia on Promoted Ion Catalysts,Acta Physicochim, 12: 327-356 (1940).
[9] Harrison R.H., Kobe K.A., Thermodynamics of Ammonia Synthesis and Oxidation, Chemical Engineering Progress, 49: 349-353 (1953).
[10] Rahimpour M.R., Asgari A., Modeling and Simulation of Ammonia Removal from Purge Gases of Ammonia Plants Using a Catalytic Pd–Ag Membrane Reactor, Journal of Hazardous Materials, 153: 557-565 (2008).
[11]  Rahimpour M.R., Asgari A., Production of Hydrogen from Purge Gases of Ammonia Plants in a Catalytic Hydrogen-Permselective Membrane Reactor, International Journal of Hydrogen Energy, 34: 5795-5802 (2009).
[12] Rahimpour M.R., Jokar S.M., Feasibility of Flare Gas Reformation to Practical Energy in Farashband Gas Refinery: No Gas Flaring, Journal of Hazardous Materials, 209: 204-217 (2012).
[13]  Rahimpour M.R., Jamshidnejad Z., Jokar S.M., Karimi G., Ghorbani A., Mohammadi A.H., A Comparative Study of Three Different Methods for Flare Gas Recovery of Asalooye Gas Refinery, Journal of Natural Gas Science and Engineering, 4: 17-28 (2012).
[14] Fazeli A., Khodadadi A.A., Mortazav Y., Manafi H., Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor,Iranian Journal of Chemistry and Chemical Engineering, 23: 45-59 (2013).
[15]  Fazeli A., Fatemi S., Mahdavian M., Ghaee A., Mathematical Modeling of an Industrial Naphtha Reformer wif Three Adiabatic Reactors in Series,Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 28: 97-102 (2009).
[16]  Mohammadikhah R., Zahedi Abghari S., Ganji H., Ahmadi Marvast M., Improvement of Hydrodynamics Performance of Naphtha Catalytic Reforming Reactors Using CFD,Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33: 63-76 (2014).
[17]Eg and G Technical Services. Inc. ""Fuel Cell Handbook", 2004.
[18]  Yakabe H., Ogiwara T., Hishinuma M., Yasuda me., 3-D model calculation for planar SOFC, Journal of Power Sources, 102: 144-154 (2001).
[19] Chan S.H., Khor K.A., Xia Z.T., A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness, Journal of Power Sources, 93: 130-140 (2001).
[20]  Peters R., Dahl R., Kluttigen U., Palm C., Stolten D., Internal Reforming of Methane in Solid Oxide Fuel Cell Systems,Journal of Power Sources, 106: 238-244 (2002). 
[21] Li P.W., Chyu M.K., Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack, Journal of Power Sources, 124: 487-498 (2003). 
[23] Saadatjou1 N., Jafari A., Sahebdelfar S., Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 34: 1-9 (2015).
[24] Hofmann P., Panopoulos K.D., Fryda L.E., Kakaras E., Comparison between Two Methane Reforming Models Applied to a Quasi-Two-Dimensional Planar Solid Oxide Fuel Cell Model, Energy, 34: 2151-2157 (2009).
[25] Haberman B.A., Young J.B., Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated -Planar Solid Oxide Fuel Cell, menternational Journal of Heat and Mass Transfer, 47: 3617-3629 (2004).
[26]  Smith J.M., Van Ness H.C., Abbot M.M., “Chemical Engineering Thermodynamics”, New York: McGrow Hill,Inc, (1996).
[27]  Hajimolana S.A., Hussain M.A., Wan Daud M.WA., Soroush M., Shamiri A., Mathematical Modeling of Solid Oxide Fuel Cells: A Review, Renewable & Sustainable Energy Reviews15: 1893-1917 (2011).
[28] Patcharavorachot Y., Peangjuntuek W., Assabumrungrat S., Arpornwichanop A., Performance Evaluation of Combined Solid Oxide Fuel Cells wif Different Electrolytes,International Journal of Hydrogen Energy, 35: 4301-4310 (2010).
[29] Treybal R.E., “Mass-Transfer Operations”, New York: McGraW Hill Inc, (1980).
[30] Perry R.H., Green D.W., “Perry ’s Chemical Engineering Handbook”, 7th ed., New York, (1997).