Cu-Cr-O and Cu-Cr-O, Zn-Cr-O Nano-Composites: Synthesis and Study of Different Parameters on the Composition and Morphology of Them

Document Type : Research Article

Authors

1 Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. IRAN

2 Department of Chemistry, Marvdasht branch, Islamic Azad University, Marvdasht, I.R. IRAN

Abstract

In this research, the synthesis of Cu-Cr-O and Cu-Cr-O.Zn-Cr-O nano-composite was done by the co-precipitation method at pH=9. The effect of some materials such as Al(NO3)3.9H2O and Zn(NO3)2, two polymeric surfactants, PEG-400 and PEG-600, and different calcination conditions of precursor on the structure, crystal phase, and morphology of nanocomposite was investigated. All samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) spectroscopy analysis. According to the results of XRD, the structure of nano-composite is a function of the salts used as reactants and surfactants. When the salts used are Cu(NO3)2.3H2O and (NH4)2Cr2O7 in the absence of surfactants, the nano-composite is composed of CuO and CuCr2O4. While, within the presence of PEG-400 and PEG-600, the nano-composite consists of CuO and CuCr2O4, in addition, a small amount of Cu2Cr2O4 is also found. The presence of Cu2Cr2O4 can be due to the reduction of some Cu2+ ion to Cu+ in spinel in the presence of a little remaining surfactant. When Zn(NO3)2 is added to the reactants the nano-composite is composed of CuCr2O4 and ZnCr2O4 spinels and CuO is not seen in the crystal structure of nano-composite. Adding of Al(NO3)3.9H2O to the reactants will cause Al2O3 to enter the structure of the nano-composite. CuAl2O4 doesn’t form here because the CuAl2O4 (which contains Al3+ (d0) ions) is less sustainable than CuCr2O4 based on Crystal Field Stabilization Energy (CFST). SEM images of nano-composites revealed that different calcination conditions and calcination temperature and surfactants affect the morphology and uniformity and the sizes of nano-composites. The best nano-composite according to the uniformity of morphology and small particle size is formed when the reactants are Cu(NO3)2.3H2O, (NH4)2Cr2O7, and Zn(NO3)2. and the precursor is calcined 2h at 400˚C and 2h at 600˚C. The morphology of the Nano-composite is almost like a small nano-sheet with a thickness of about 15 nm.

Keywords

Main Subjects


[1] Geng Q., Zhao X., Gao X., Yang S., Liu G., Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints, J. Sol. Gel. Sci. Technol., 61: 281-288 (2012).
[2] Yazdanbakhsh M., Khosravi I., Mashhoori M.S., Rahimizadeh M., Shiri A., Bakavoli M., Synthesis, characterization and application of nano-sized Co2CrO4 spinel catalyst for selective oxidation of sulfides to sulfoxides, Mater. Res. Bull., 47: 413-418 (2012).
[3] Rahmatolahzadeh R. Mousavi-Kamazani M. Shobeiri S.A., Facile Co-precipitation-calcination Synthesis of CuCo2O4 Nanostructures using Novel Precursors for Degradation of Azo Dyes, J. Inorg. Organomet. Polym., 27: 313-322 (2016).
[4] Jarimi-Jaberi Z., Moaddeli, M.S., Setoodehkhah M., Nazarifar M.R., Nano-copper chromite (nano-CuCr2O4): a novel and efficient catalyst for the synthesis of biscoumarin and pyrano[c]chromene derivatives in water at room temperature, Res. Chem. Intermed., 42: 4641-4650 (2016).
 [5] Shiau C.Y., Chen S., Tsai J.C., Lin S.I., Effect of zinc addition on copper catalyst in isoamyl alcohol dehydrogenation, Appl. Catal. A: Gen., 198:95-102 (2000).
[6] Crivello M., Pe´rez, C., Ferna´ndez J., Eimer G., Herrero E., Casuscelli S., Rodri´guez Castello´n, E., Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol, Appl. Catal. A: Gen., 317: 11-19 (2007).
[8] Shankha S.A., Ghosh S., Bal R., Catalytic Oxidation of Aniline to Azoxybenzene Over CuCr2O4 Spinel Nanoparticle CatalystACS Sustainable Chem. Eng., 2: 584-589 (2014).
[9] Santacesaria E. Carotenuto G. Tesser R. Di Serio M., Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts, Chem. Engin. J., 179: 209-220 (2012).
[10] Keenan L.D. Brent H., Shanks H.,  Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol, J. Catalysis, 285:235-241 (2012).
[11] Musil J.,  Blazek J., Fajfrlik K., Cerstvy R., Proksova S., Antibacterial Cr–Cu–O films prepared by reactive magnetron sputtering  J. App. Surf. Sci., 276: 660-666 ( 2013).
[12] Valdes-Solis T., Marban G., Fuertes A.B., Nanosized catalysts for the production of hydrogen by methanol steam reforming, Catal. Today, 116: 354-360 (2006).
[13] Hana X., Zhoua R., Lai G., Yue B., Zheng X., Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts, J. Mol. Catal. A: Chem., 209: 83-87 (2004).
[14] Sobeiri S.A., Mousavi-Kamazani M., Beshkar F., Facile mechanical milling synthesis of NiCr2O4 using novel organometallic precursors and investigation of its photocatalytic activity, J. Mater. Sci.: Mater. Electron., 28:8108-8115 (2017).
[15] Hosseini S.A., Alvarez-Galvan M.C., G.Fierro J.L., Niaei A., Salari D., MCr2O4 (M=Co, Cu,and Zn) nanospinels for 2-propanol combustion: Correlation of structural properties with catalytic performance and stability, Ceram. Int., 39: 9253–9261 (2013).
[16] Hosseini S.A.,  Niaei A., Salari D., Alvarez-Galvan M.C., Fierro J.L.G., Study of correlation between activity and structural properties of Cu-(Cr, Mn and Co)2 nano mixed oxides in VOC combustion, Ceram. Int., 40: 6157–6163 (2014).
 [17] Sathiskumar P.S., Thomas C.R., Madras G., Solution combustion synthesis of nanosized copper chromite and its use as a burn rate modifier in solid propellants,  Ind. Eng. Chem. Res., 51: 10108-10116 (2012). 
[18] visvanth J.V., vijayadarshan P., Mohan T., Rao N.V.S., Gupta A., venkataraman A., Copper Chromite as Ballistic Modifier in a Typical Solid Rocket Propellant Composition: A Novel Synthetic Route InvolvedJ. Energ. Mater., 69: 1-13 (2017).
[19] Patil P.R., Krishnamurthy V.N., Joshi S.S., Effect of Nano‐Copper Oxide and Copper Chromite on the Thermal Decomposition of Ammonium Perchlorate, Propell. Explos. Pyrotec., 33: 266-270 (2008).
[20] Snoop A.P., Rajeev R., George B.K., Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate, Thermochim. Acta, 606: 34-40 (2015).
 [21] حسینی، سید قربان؛ حدادی پور، زهرا سنتز نانوکامپوزیت گرافن/Fe3O4 و بررسی فعالیت کاتالیزی آن بر رفتار احتراقی آمونیوم پرکلرات، نشریه شیمی و مهندسی شیمی ایران، (3)37 :71 تا 79 (1397)
 [22] Campos E.A., Dutra R.C.L., Rezende L.C., Diniz M.F., Nawa W.M.D., Iha K., Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants, J. Aerosp. Technol. Manage., 2: 323-330 ( 2010).
[23] Kawamoto A.M., Pardini L.C., Rezende L.C., Synthesis of copper chromite catalyst, Aerosp. Sci. Technol, 8: 591-598 (2004).
[24] Prasad R., Singh P., Applications and Preparation Methods of Copper chromite catalyst: A review, Bull. Chem. React. Engine. Catal., 6: 63-113 (2011).
[25] Tavakoli H., Saraf Mamoorey R., Zarei A.R., Inverse Co-precipitation Synthesis of Copper Chromite Nanoparticles, Iran. Chem. Chem. Eng.(IJCCE), 35(1): 51-55 (2016).
[26] Hassanzadeh-Tabrizi S.A., Pournajaf R., Moradi-Faradonbeh A., Sadeghinejad S., Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties, Ceram. Int., 42: 14121-14125 (2016).
[28] Yanyan J.,  Jinggang L., Xiaotao S., Guiling N., Chengyu W., Xiumei G., CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, J. Sol–Gel Sci. Technol., 42: 41-45 (2007).
[29] Lv W., Luo Z., Yang H., Liu B., Weng W., Liu J Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders, ultrason. sonochem., 17: 344-351(2010).
[30] Hu Z., Qin Y., Zhou H., Kang J., Zhai S., Gao H., Preparation And Photoelectric Properties Of CuCr2O4 Nanopowders,  Adv. Mater. Res., 974: 284-286 (2011).