Synthesis of Iron Nanocomposite Hydrogel and Study the Release of Doxorubicin Anticancer Drug

Document Type : Research Article

Authors

Department of Chemistry, Payame Noor University (PNU), Tehran, I.R. IRAN

Abstract

In this study, for the first time, the synthesis of iron nanocomposite hydrogel based on poly ((2-Dimethyl amino) ethylene methacrylate) grafted onto salep, as a biocompatible polymer, is reported. DMA monomers were grafted onto the salep backbone via initiation by APS, and at the same time, the crosslinking were occurred by using MBA. Factors affecting the water swelling during the hydrogel synthesis (monomer concentration, MBA concentration, APS concentration) were systematically optimized and the impact of various environmental conditions (different salt concentrations, pHs, mixed organic solvents, etc.) were examined. Furthermore, the doxorubicin release from iron hydrogel nanocomposite was studied. The results clearly show that the hydrogel nanocomposite can successfully release doxorubicin and the related delivery is pH-sensitive. To confirm the grafting of poly ((2-Dimethyl amino) ethylene methacrylate) onto the salep backbone, FT-IR spectra were used. The morphology of hydrogel was evaluated by SEM, and the size of iron nanoparticles in the matrix of hydrogel was measured by TEM and AFM (9-11 nm). 

Keywords

Main Subjects


[1] Nayak S., Lyon L. A., Soft Nanotechnology with Soft Nanoparticles, Angewandte Chemie International Edition, 44(47): 7686-7708 (2005).
[2] M Christe Sonia Mary., S Sasikumar., Sodium Alginate/Starch Blends Loaded with Ciprofloxacin Hydrochloride as a Floating Drug Delivery System - In Vitro Evaluation, Iran. J. Chem. Chem. Eng (IJCCE), 34(2): 25-31 (2015).
]3[ نبی­تیر، معصومه؛ آقامیری، سید فواد؛ طلائی خوزانی، محمدرضا؛ بررسی آزمایشگاهی تأثیر پوشش­دهی کیتوسان در کاهش تجمع نانولوله های کربنی به عنوان حامل داروی ضد سرطان کوئرستین، نشریه شیمی ومهندسی شیمی، (3) 32: 93 تا 102 (1396).
]4[ اکبرزاده، حامد؛ مهرجویی، عصمت؛ عباسپور، محسن؛ سالمی، سیروس؛ نفوذ نانووایر نقره به درون نانولوله ی کربنی: یک روش مؤثر برای رهایش داروی ضد سرطان، نشریه شیمی ومهندسی شیمی، (4)36: 189 تا 199 (1396).
[5] Bhattacharyya D., Singh S., Satnalika N., Khandelwal A., Jeon, S. H., Nanotechnology, Big Things from a Tiny World: A Review, Nanotechnology, 2(3): 29-38‏ (2009).
[6] نوبخت اصل، فاطمه؛ کردتبار، مهران؛ سنتز و شناسایی هیدروژل­های ابر جاذب نانوکامپوزیت مغناطیسی آهن بر پایه صمغ زانتان اصلاح شده با استفاده از اکریلیک اسید، نشریه شیمی ومهندسی شیمی، (4)35: 33 تا 38 (1395).
[7] Ang K.L., Venkatraman S., Ramanujan R.V., Magnetic PNIPA Hydrogels for Hyperthermia Applications in Cancer Therapy, Materials Science and Engineering: C, 27(3): 347-351 (2007).
[8] Gupta P., Vermani K., Garg S., Hydrogels: from Controlled Release to pH-Responsive Drug Delivery, Drug Discovery Today, 7(10): 569-579 (2002).
[9] Huang Y., Liu M., Chen J., Gao C., Gong, Q., A Novel Magnetic Triple-Responsive Composite Semi-IPN Hydrogels for Targeted and Controlled Drug Delivery, European Polymer Journal, 48(10): 1734-1744 (2012).
[10] Reddy N.N., Varaprasad K., Ravindra S., Reddy G.S., Reddy K.M.S., Reddy K.M., Raju K.M., Evaluation of Blood Compatibility and Drug Release Studies of Gelatin Based Magnetic Hydrogel Nanocomposites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1): 20-27 (2011).
[11] Ferrari M., Cancer Nanotechnology: Opportunities and Challenges, Nature Reviews Cancer, 5(3): 161-171 (2005). ‏
[12] Vrignaud S., Benoit J.P., Saulnier P., Strategies for the Nanoencapsulation of Hydrophilic Molecules in Polymer-Based Nanoparticles, Biomaterials, 32(33): 8593-8604 (2011).
[13] Sun C., Lee J.S., Zhang M., Magnetic Nanoparticles in MR Imaging and Drug Delivery, Advanced Drug Delivery Reviews, 60(11): 1252-1265 (2008)
[14]Grief A.D., G. Richardson., Mathematical Modelling of Magnetically Targeted Drug Delivery, Journal of Magnetism and Magnetic Materials, 293(1): 455-463 (2005).
[15]Ma X., Tao H., Yang K., Feng L., Cheng L., Shi X., Liu Z., A Functionalized Graphene Oxide-Iron Oxide Nanocomposite for Magnetically Targeted Drug Delivery, Photothermal Therapy, and Magnetic Resonance Imaging, Nano Research, 5(3): 199-212 (2012).
[16] Haley B., Frenkel E., Nanoparticles for Drug Delivery in Cancer Treatment, Urologic Oncology: Seminars and Original Investigations, 2: 57– 64 (2008).
[18] Kabiri K., Zohuriaan‐Mehr M.J., Superabsorbent Hydrogel Composites, Polymers for Advanced Technologies, 14(6): 438-444 (2003).
[20] Odian G., “Principle of Polymerization”, 2nd Ed. Wiley-Interscience, New York, (1981).
[21] Pourjavadi A., Ghasemzadeh H., Soleyman, R., Synthesis, Characterization, and Swelling Behavior of Alginate‐g‐Poly (Sodium Acrylate)/Kaolin Superabsorbent Hydrogel Composites, Journal of Applied Polymer Science, 105(5): 2631-2639 (2007).
[22] Zohuriaan‐Mehr M.J., Motazedi Z., Kabiri K., Ershad‐Langroudi A., Allahdadi I., Gum Arabic–Acrylic Superabsorbing Hydrogel Hybrids: Studies on Hwelling Rate and Environmental Responsiveness, Journal of Applied Polymer Science, 102(6): 5667-5674 (2006).
[23] Jianqi F., Lixia G., Swelling/Deswelling Behavior of Thermally Induced PVA/PAA Hydrogel Fiber in Aqueous Salt Solutions, Journal of Polymer Materials, 19(1): 103-112 (2002).
[24] Flory P.J., “Principles of Polymer Chemistry”, Cornell University Press ‏(1953).
[25] Pass G., Phillips G.O., Wedlock D. J., Interaction of Univalent and Divalent Cations with Carrageenans in Aqueous Solution, Macromolecules, 10(1): 197-201 (1977).
[26] Pourjavadi A., Ghasemzadeh H., Mojahedi F., Swelling Properties of CMC‐g‐Poly (AAm‐co‐AMPS) Superabsorbent Hydrogel, Journal of Applied Polymer Science, 113(6): 3442-3449 (2009).
[27] Pourjavadi A., Ayyari M., Amini-Fazl M. S., Taguchi Optimized Synthesis of Collagen-g-Poly (Acrylic Acid)/Kaolin Composite Superabsorbent Hydrogel, European Polymer Journal, 44(4): 1209-1216 (2008).
[28] Kabiri K., Zohuriaan‐Mehr M.J., Superabsorbent Hydrogel Composites, Polymers for Advanced Technologies, 14(6): 438-444 (2003).
[29] Slowing I. I., Vivero-Escoto J. L., Wu C. W., Lin V.S.Y., Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers, Advanced Drug Delivery Reviews, 60(11): 1278-1288 (2008).
[30] Serra L., Doménech J., Peppas N.A., Drug Transport Mechanisms and Release Kinetics from Molecularly Designed Poly (Acrylic Acid-g-Ethylene Glycol) Hydrogels, Biomaterials, 27(31): 5440-5451 (2006).