Construct of Electrochemical Sensor Using Screen Printed Electrode Modified with Schiff Base Ligand for Simultaneous Determination of Hydrazine and Phenol

Document Type : Research Article

Authors

Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, I.R. IRAN

Abstract

In this research, a simple, fast, inexpensive, and efficient microextraction method called Vortex Assisted -Solidified Floating Organic Drop MicroExtraction (VAE-SFODME) in pre-concentration and separation of ultra-trace amount of cadmium from aqueous environmental, biological, and food samples was studied. In this method, cadmium metal forms a complex with ammonium pyrrolidine dithiocarbamate (APDC) and is extracted into the organic phase, 1-dodecanol. After the phase separation, the enrichment analyte is determined by electrochemical atomic absorption spectroscopy. The use of vortex as a useful tool eliminated the organic solvent of the disperser, while also distributing fine extracting solvent in the solution and increasing the contact surface, increasing the extraction efficiency and the enrichment factor. Solvent 1-dodecanol was chosen as a suitable extraction solvent due to the proper melting point and low density than water. Experimental parameters related to extraction efficiencies such as extraction solvent volume, pH, the concentration of the chelating agent, extraction time, centrifuge condition, salt concentration, and the effect of interference ions were studied. Under the optimized conditions (Extraction solvent (1-dodecanol); 90 μL, pH =2.5, APDC; 12 μL, extraction time; 3 min, centrifugation speed 4000 rpm for 2 min, no salt addition, and at room temperature) detection limit (S/N=3), determination limit, reproducibility (RSD, n=5) and enrichment factor were 0.58 ng/mL, 1.92 ng/mL, 0.97% and 96 respectively. Meanwhile, in order to study the accuracy of the proposed method, environmental samples (refined water, urban water, and river water) and biological samples including human saliva and saliva, and salts with cadmium levels at concentrations of 20 and  40 ng/mL spiked, the recovery of spiked samples were very good and were in the range of 94.5-101.3%. Therefore, the proposed method can be used successfully in various aquatic, biological, and food samples.

Keywords

Main Subjects


[1] Tamás K., Wachter-Kiss E., Kormány R., Hydrazine Determination in Allopurinol Using Derivatization and SPE for Sample Preparation, J. Pharm. Biomed. Anal., 152: 25-30 (2018).
[2] Shahidi L., Taei M., Banitaba S. H., Tavakkoli N., A New 2-amino-3-pynanopyrane-3-carbonitrile Derivative for Electrocatalytic Oxidation and Determination of Hydrazine, Mater. Sci. Eng. C, 75: 1154-1160 (2017).
[3] Smolenkov A.D., Shpigun O.A., Direct Liquid Chromatographic Determination of Hydrazines: A Review, Talanta, 102: 93-100 (2012).
[5] Shi X., Yin C., Wen Y., Zhang Y., Huo F., A Probe with Double Acetoxyl Moieties for Hydrazine and its Application in Living Cells, Spectrochim. Acta A, 203: 106-111 (2018).
[6] George M., Nagaraja K. S., Balasubramanian N., Spectrophotometric Determination of Hydrazine, Talanta, 75: 27-31 (2008).
[8] Vakh C., Evdokimova E., Pochivalov A., Moskvin L., Bulatov A., A Novel Flow Injection Chemiluminescence Method for Automated and Miniaturized Determination of Phenols in Smoked Food Samples, Food Chem., 237: 929-935 (2017).
[9] Gatselou V., Christodouleas D.C., Kouloumpis A., Gournis D., Giokas D. L., Determination of Phenolic Compounds Using Spectral and Color Transitions of Rhodium Nanoparticles, Anal. Chim. Acta, 932: 80-87 (2016).
[10] Hsu B.Y., Lin S.W., Stephen Inbaraj B., Chen B.H., Simultaneous Determination of Phenolic Acids and Flavonoids in Chenopodium Formosanum Koidz. (djulis) by HPLC-DAD-ESI–MS/MSJ. Pharm. Biomed. Anal., 132: 109-116 (2017).
[11] Ziyatdinova G. K., Saveliev A. A., Evtugyn G. A., Budnikov H. C., Simultaneous voltammetric Determination of Phenolic Antioxidants with Chemometric Approaches, Electrochim. Acta, 137: 114-120 (2014).
[13] Karimi-Maleh H., Moazampour M., Ensafi A. A., Mallakpour S., Hatami M., An electrochemical Nanocomposite Modified Carbon Paste Electrode as a Sensor for Simultaneous Determination of Hydrazine and Phenol in Water and Wastewater Samples, Environ. Sci. Pollut. Res. Int., 21: 5879-5888 (2014).
[15] حسینی زوارمحله، سید رضا؛ قاسمی میر، شهرام؛ پورصادق لیمویی، شیوا؛ بررسی مقایسه ای اکسایش الکتروکاتالیزی برخی از الکل های مهم در سطح الکترود خمیر کربن اصلاح شده با نانوالیاف اکسید نیکل الکتروریسی شده، نشریه شیمی و مهندسی شیمی ایران، (4)37 : 109 تا 120 (1397).
[16] حسنی نژاد درزی، سید کریم؛ رضوانی، روزبه؛ پورعلی، سیده معصومه؛ الکترواکسایش فرمالدهید با استفاده از الکترود خمیر کربن اصلاح شده با نانوزنولیت MCM-41 دارای نقره، نشریه شیمی و مهندسی شیمی ایران، (1)37 : 51 تا 61 (1397).
[17] قلی زاده، اعظم؛ شاهرخیان، سعید؛ ایرجی زاد، اعظم؛ مهاجرزاده، شمس الدین؛ وثوقی، منوچهر؛ اندازه گیری گلوتامات با استفاده از حسگر زیستی بر پایه نانولوله های کربنی عمودی، نشریه شیمی و مهندسی شیمی ایران، (4)33 : 33 تا 36 (1392).
[18] Rana S., Mittal S. K., Singh N., Singh J., Banks C. E., Schiff Base Modified Screen Printed Electrode for Selective Determination of Aluminium(III) at Trace Level, Sens. Actuators B., 239: 17-27 (2017).
[19] دهقانی فیروزآبادی، احمدعلی؛ حسینی مقدم، سیده مریم؛ سنتز و شناسایی کمپلکس‌های نامتقارن باز شیف حاوی دهنده‌ی تیواتری با یون‌های فلزی منگنز (II)، کبالت (III)، نیکل (II)، مس(II)  و کادمیوم (II)، نشریه شیمی و مهندسی شیمی ایران، (2)38 : 165 تا 172 (1398).
[20] Caro-Díaz C.A., Lillo-Arroyo L., Valenzuela-Melgarejo F.J., Roudergue-Zúñiga V., Cabello-Guzmán G., Effect of Metal in Schiff Bases of Chitosan Adsorbed on Glassy Carbon Electrode in the Inhibition of Sphingomyelinase C Toxin, Food Chem. Toxicol, 120: 662-667 (2018).
[22] Çakmak D., Çakran S., Yalçinkaya S., Demetgül C., Synthesis of Salen-Type Schiff Base Metal Complexes, Electropolymerization on Graphite Electrode Surface and Investigation of Electrocatalytic Effects, J. Electroanal. Chem., 808: 65-74 (2018).
[23] Bard A.J., Faulkner L.R., "Electrochemical Methods Fundamentals and Applications", 2nd ed., John Wiley & Sons, Inc. (2001).
[24] Esfandiari Baghbamidi S., Beitollahi H., Tajik S., Graphene Oxide Nano-Sheets/Ferrocene Derivative Modified Carbon Paste Electrode as an Electrochemical Sensor for Determination of Hydrazine, Anal. Bioanal.Electrochem., 6: 634-645 (2014).
[25] Mohammadi S.Z., Beitollahi H., Bani Asadi E., Electrochemical Determination of Hydrazine Using a ZrO2 Nanoparticles-Modified Carbon Paste Electrode, Environ.Monit. Assess., 187: 122-132 (2015).