Wastewater Treatment and Biodiesel Production Using Microalgae Cultivated in Municipal Wastewater in Semi-Pilot Scale: Mashhad City Wastewater Case Study

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

2 Office of Research and Productivity, Water and Wastewater Management Company of Mashhad, Mashhad, I.R. IRAN

Abstract

The conventional activated sludge technique in wastewater treatment is an expensive process and suffers from problems such as large amounts of sludge, high energy consumption, high turbidity in the effluent, and not effectively respond to variations in the composition of wastewater. The use of municipal wastewater for microalgae production and its conversion to value-added products such as biodiesel in conjunction with wastewater treatment is a new approach in the wastewater treatment industry. But due to the lack of sufficient information, it has not been extended to a commercial level and most reported activities are at the research level. Specifically, in simultaneous wastewater treatment and microalgae production in a semi-pilot scale very few publications exist. In this study,
for the first time, simultaneous wastewater treatment and microalgae production was conducted
in a semi-pilot 500 l open pond raceway. The objectives of this study were, on one hand, evaluation of the
potential of algae-based treatment for removal of nutrients and COD and, on the other hand, evaluation of the potential of wastewater to produce microalgae in a semi-pilot scale in an open pond raceway. The results indicated that in week-long cultivation, biomass concentration of the broth reached 1.25 g/L with the lipid content of 25%. Harvesting of microalgae using chemical flocculation resulted in 83% recovery of algal solid content. The dried microalgae, during direct acidic transesterification with 76% yield, produced biodiesel with proper fatty acid profile mainly based on Palmitic, Oleic, and Linoleic acids that accounted for 49.5% of total lipid content. The simultaneous wastewater treatment results indicated COD removal of approximately 50% along with total nitrogen removal of 25%, and phosphate removal of 50% was achieved. This study indicated that microalgae production using wastewater is a promising approach to the development of green technology to produce value-added products.

Keywords

Main Subjects


[1] حاج سردار, مهدی, برقعی, سید مهدی, حسنی, امیرحسام, تکدستان, افشین; بررسی نیتریفیکاسیون و دنیتریفیکاسیون هم زمان در تصفیه پساب بدون استفاده از منبع کربن خارجی در راکتور ناپیوسته متوالی, نشریه شیمی و مهندسی شیمی ایران, (2) 35, 97-83 (1395).
[2] نجفی، بهمن؛ مدل سازی سینتیک شیمیایی تولید سوخت بیودیزل از روغن پسماند رستوران، نشریه شیمی و مهندسی شیمی ایران، (2)30: 25-33 (1390).
[3] Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonin I.G., Tredicil M.R., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, J. Biotechnology and Bioengineering, 102:100–112 (2009).
[4] Green F.B., Bernstone L.S., Lundquist T.J., Oswald W.J., Advanced Integrated wastewater pond systems for nitrogen removal, Water Science & Technology, 33(7): 207-217 (1996).
[5] Oswald W.J., My sixty years in applied algalogy, J. Applied Phycology, 15(2): 99-106 (2003).
[6] Oswald W. J., Advanced Integrated Wastewater Pond Systems, ASCE Convention EE Div/ASCE, San Francisco, CA, Nov. 5-8 (1990).
[7] Chisti Y., Biofuel from microalgae, Biotechnology Advances, 25(3): 294-306 (2007).
[8] Park J.B., Craggs R.J., Algal production in wastewater treatment high rate algal ponds for potential biofuel use, Water SciTechnol, 63(10): 2403-10 (2011).
[9] Ruiz-Marin A., Mendoza-Espinosa L.G., Stephenson T., Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresource Technol. 101: 58–64 (2010).
[10] Mata T.M., Martins A.A., Caetano N. S., Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14: 217-232 (2010). 
[11] Kong Q.X., Li L., Martinez B., Chen P., Ruan R., Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production, Appl. Biochem. Biotechnol. 160: 9–18 (2010).            
[12] Orpez R., Martinez M.E., Hodaifa G., El Yousfi F., Jbari N., Sanchez S., Growth of the microalga Botryococcus braunii in secondarily treated sewage, Desalination 246: 625–630 (2009).
[13] Chinnasamy S., Bhatnagar A., Hunt R.W., Das K.C., Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications, Bioresource Technol. 101:3097–3105 (2010).
[14] Roberts G.W., Fortier M.-O.P., Sturn B.S.M., Stagg-Williams S.M., Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion, Energy & Fuels, 27(2): 857-867 (2013).
[15] Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C.,Kruse O., Hankamer B., Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Research, 1(1): 24-30 (2008).
[16] Mobin S., Alam F., Biofuel production from algae utilizing wastewater, 19th Australian Fluid Mechanics Conference, Melborne, Australia, 8-11 December (2014).
[17] Bligh E.G., Dyer W.J., A rapid method of total lipid extraction and purification, Canadian journal of biochemistry and physiology, 37:911-917(1959).
 [18] Breuer G., Evers W.A., de Vree J. H., Kleinegris D. M., Martens D. E., Wijffels R.H., Lamers P. P., Analysis of fatty acid content and composition in microalgaeJoVE (Journal of Visualized Experiments), 80:e50628 (2013).
 [19] “4500-N NITROGEN (2017)”, Standard Methods For the Examination of Water and Wastewater, DOI: 10.2105/SMWW.2882.086
[20] گلزاری، ابوعلی؛ عبدلی، محمد علی؛ خدادادی، عباسعلی؛ کرباسی، عبدالرضا؛ ایمانیان، سجاد؛ بررسی فرآیندهای انعقاد الکتریکی و شیمیایی برای جداسازی میکروجلبک های آب شور، نشریه شیمی و مهندسی شیمی ایران، (1)35: 39-52 (1395).
[21] Zhu S., Qin L., Feng P., Shang C., Wang Z., Yuan Z., Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobiorector, Bioresource Technology, In Press (Available online 17 October 2018).
[22] Drira N., Piras A., Rosa A., Porcedda S., Dhaouadi H., Microalgae from domestic wastewater facility's high rate algal pond: lipids extraction, characterization and biodiesel production, Bioresource Technology, 206, 239-244 (2016).
[23] Bhatnagar A., Bhatnagar M., Chinnasamy S., Das K., Chlorella minutissima – a promising fuel alga for cultivation in municipal wastewaters. Appl. Biochem. Biotechnol. 161, 523–536 (2010).
[25] Guldhe A., Singh P., Renuka N., Bux F., Biodiesel synthesis from wastewater grown microalgal feedstock using enzymatic conversion: A greener approach, Fuel, 237, 112-1118 (2019).
[26] Woertz I., Feffer A., Lundquist T., Nelson Y., Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock, J. Environmental Engineering, 135: 1115-1122 (2009).
[27] Park J.B.K., Craggs R.J., Shilton A.N., Wastewater treatment high rate algal ponds for biofuel production, Bioresource Technol., 102, 35-42 (2011).
[29] De Francisci D., Su Y., Lital A., Angelidaki I., Evaluation of microalgae production coupled with wastewater treatment, Environ Technol, 39, 581-592 (2018).
[30] Alvarez-Diaz P.D., Ruiz J., Arbib Z., Barragan J., Garrido-Perez M.C., Perales J.A., Freshwater microalgae for simultaneous wastewater nutrient removal and lipid production, Algal Research, 24, 477-485 (2017)