Optimization of Monoclonal Antibody Production in Fed-Batch Fermentation Processes of Hybridoma Cells by Using Genetic Algorithm

Document Type : Research Article


Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN


In this study, the optimization of a semi-continuous culture of hybridoma cells have been investigated to maximize the production of monoclonal antibodies by using a genetic algorithm.  The culture time was ten days. The objective function was the monoclonal antibody production and the independent variables were daily feeding profiles of the substrate (glucose and glutamine). To achieve the optimal feeding strategy, a seventh-order kinetic model was used to model the hybridoma semi-continuous cultivation process. The governing differential equations have been solved using MATLAB software. The modeling results show that the optimal amount for monoclonal antibody production based on the uniform feeding profile of the substrate is 233 mg and based on the variable feeding profile of the substrate is 314 mg, which shows 34% improvement in monoclonal antibody production. In addition, the results of the model have a consistent agreement with the previous research by Trembli et al. and Miguel et al.


Main Subjects

[1] Rodrigues M.E., Costa A.R., Henriques M., Azeredo J., Oliveira R., Technological Progresses in Monoclonal Antibody Production Systems, Biotechnology Progress, 26(2): 332-351 (2010).
[2] Li F., Zhou J.X., Yang X., Tressel T., Lee B., Current Therapeutic Antibody Production and Process Optimization, Bioprocess J., 4: 1–8 (2005).
[3] Yoon S.K., Hong J.K., Choo S.H., Song J.Y., Park H.W., Lee G.M., Adaptation of Chinese Hamster Ovary Cells to Low Culture Temperature: Cell Growth and Recombinant Protein Production, J. Biotechnology, 122: 463–472 (2006).
[4] Chen L., Nguang S.K., Chen X.D., Li X.M., Modelling and Optimization of Fed-Batch Fermentation Processes Using Dynamic Neural Networks and Genetic Algorithms, Biochemical Engineering Journal, 22(1): 51–61 (2004).
[5] Levišauskas, D., Tekorius T., Model-Based Optimization of Fed-Batch Fermentation Processes Using Predetermined Type Feed-Rate Time Profiles. A Comparative Study, Information Technology and Control, 34(3): 231–236 (2005).
[6] Liu C., Gong Z., Shen B., Feng E., Modelling and Optimal Control for a Fed-Batch Fermentation Process, Applied Mathematical Modelling, 37 (3): 695–706 (2013).
[7] Peng W., Zhong J., Yang J., Ren Y., Xu T., Xiao S., Tan H., The Artificial Neural Network Approach Based on Uniform Design to Optimize the Fed-Batch Fermentation Condition: Application to the Production of Iturin A. Microbial Cell Factories, 13(1): 54 (2014).
[8] Roubos J.A., van Straten G., van Boxtel A.J.B., An Evolutionary Strategy for Fed-Batch Bioreactor Optimization; Concepts and Performance, Journal of Biotechnology, 67 (2–3): 173–187 (1999).
[9] Kookos I. K., Optimization of Batch and Fed-Batch Bioreactors Using Simulated Annealing, Biotechnology Progress, 20(4): 1285–1288 (2004).
[10] Jayaraman V.K., Kulkarni B.D., Gupta K., Rajesh J., Kusumaker H.S., Dynamic Optimization of Fed-Batch Bioreactors Using the Ant Algorithm, Biotechnology Progress, 17(1): 81–88 (2001).
[30]  رضاکاظمی، ماشاآالله؛ راجی، مصطفی، کاربرد الگوریتم ژنتیک در بهینه سازی فرایندهای مرتبط با مهندسی شیمی، نشریه شیمی و مهندسی شیمی ایران، (2)38 : 228 تا 244 (1398).
[31]  پوربشیر، اسلام؛ مهاجری اول، ژیلا؛ نکوئی، مهدی؛ حمیدوند، سمیه ، مطالعه ارتباط کمی ساختار ـ فعالیت برای پیش بینی فعالیت  PIMمشتق­های تری آزولوپیریدین با اسفاده از الگوریتم ژنتیک ـ برازش خطی چندگانه، نشریه شیمی و مهندسی شیمی ایران، (2)37 : 137 تا 148 (1397).