Prediction of Thermodynamic Properties of nanofluids Using the Morse Potential and Quantum Correction of the Second Virial Coefficient with a Generalized Statistical Mechanics Equation of State

Document Type : Research Article


Department of Chemistry, Payame Noor University Tehran, I.R. IRAN


In this work, some thermodynamic properties of nanoparticles, nanofluids containing a base fluid, and nanofluids with two different bases were assessed at the pressure range from 0.1 to 45 MPa and a temperature range from 273 to 363 K. this study focuses on nanofluids such as Al2O3, CuO, Co3O4, SnO2, TiO2-Rutile, TiO2-Anatase, ZnO and the base fluid containing H2O, Ethylene glycol and polyethylene glycol (with a molecular weight of 400). The used Equation of State (EOS) is the Tao–Mason (TM) equation of state which is based on statistical mechanics and its parameters can be calculated by a potential function. According to the quantum properties of nanoparticles, a quantum correction was used to calculate the second virial coefficient. To consider the polar effects of the material, the Morse three-parameter potential function was used which is more flexible than the usual two-parameter potentials functions such as Lenard Jones 6-12. Initially, the pure-component parameters of nanoparticles were fitted to the saturated liquid density data, and then the parameters were used for mixtures. Also, a binary parameter was fitted to consider the interactions between two different molecules in the mixtures. In total, from 1181 data points examined, the average absolute deviation between the calculated densities and the experimental ones is of the order of 0.5%. According to the results, this equation of state has good accuracy for calculating and predicting the density of nanofluids.


Main Subjects

[2] Haghtalab A., Mohammadi M., Fakhroueian Z., Absorption and Solubility Measurement of CO2 in Water-Based ZnO and SiO2 Nanofluids, Fluid Phase Equilibria, 392: 33-42 (2015).
[3] Mohammadi M., Haghtalab A., Fakhroueian Z., Experimental Study and Thermodynamic Modeling of CO2 Gas Hydrate Formation in Presence of Zinc Oxide Nanoparticles, The Journal of Chemical Thermodynamics, 96: 24-33 (2016).
[4] Suganthi K., Rajan K., Metal Oxide Nanofluids: Review of Formulation, Thermo-Physical Properties, Mechanisms, and Heat Transfer Performance, Renewable and Sustainable Energy Reviews, 76: 226-255 (2017).
[5] انصاری، رضا؛ محمودی، نیلوفر؛ استوار، فریبا، سنتز و کاربرد نانورشته­های منگنز دی اکسید برای حذف رنگزای کاتیونی از آب،  نشریه شیمی و مهندسی شیمی ایران، (1)38:  17 تا 28 (1398).
[7] Chitra  B., Sathish K. K., Sonication Effects on Stability and Thermal Properties of Silica- Paraflu Based Nanofluids,  Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 153-159 (2017).
[8] Pak B.C., Cho Y.I., Hydrodynamic and Heat Transfer Study Of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer, 11: 151-170 (1998).
[9] Xiang-Qi W., Arun S.M., A review on Nanofluids - Part I: Theoretical and Numerical Investigations, Braz. J. Chem. Eng., 25: 613–630 (2008).
[10] Ren Y., Xie H., Cai A., Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles, Appl. Phys., 38: 3958–3961 (2005).
[11] Mintsa H.A., Roy G., Nguyen C.T, Doucet D., New Temperature-Dependent Thermal Conductivity Data for Water-Based Nanofluids,  Int. J. Therm. Sci., 48: 363–371 (2009).
[12] Chandrasekar M., Suresh S., Chandra Bose A., Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid, Exp. Therm. Fluid Sci., 34: 210–216 (2010).
[13] Papari M.M., Yousefi F., Moghadasi J., Karimi H., Campo A., Modeling Thermal Conductivity Augmentation of Nanofluids Using Diffusion Neural Networks, Int. J. Therm. Sci., 50: 44-52 (2011).
[14] Karimi H., Yousefi F., Rahimi M.R., Correlation of Viscosity in Nanofluids Using Genetic Algorithm-Neural Network (GA-NN), Heat Mass Transfer, 47: 1417-1425 (2011).
[15] S Maïga S.E.B, Palm S.J., Nguyen C.T, Roy G., Galanis N., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Fl., 26: 530-546 (2005).
[16] Pastoriza-Gallego M.J, Casanova C., Legido J.L, Pi ˜neiro M.M., CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity, Fluid Phase Equilib., 300: 188-196 (2011).
[17] Segovia J.J., Fandi~no O., L_opez E.R., Lugo L., Martín M.C., Fernandez J., Automated Densimetric System: Measurements and Uncertainties f Compressed Fluids, J. Chem. Thermodyn., 41: 632-638 (2009).
[18] Vatani A., Woodfield P.L., Dao D.V., A survey of Practical Equations For Prediction of Effective Thermal Conductivity o Spherical-Particle Nanofluids, J. Mol. Liq., 211: 712-733 (2015).
[19] Sundar L.S., Sharma K., Naik M., Singh M.K., Empirical and Theoretical Correlations on Viscosity of Nanofluids: A Review, Renew. Sustain. Energy Rev., 25: 670-686 (2013).
[21] Sankar N., Mathew N.S., Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions, Int. Commun. Heat Mass Transf., 35: 867-872 (2008).
[22] Sachdeva P.," Molecular Dynamics Study of Thermal Conductivity Enhancement of Water-Based Nanofluids", in, University of Central Florida Orlando, Florida, (2009).
[25] Kumar D.H., Patel H.E., Kumar V.R., Sundararajan T., Pradeep T., Das S.K., Model for Heat Conduction in Nanofluids, Phys. Rev. Lett., 93: 144301 (2004).
[26] Cui W., Shen Z., Yang J., Wu S., Molecular Dynamics Simulation on Flow Behaviors of Nanofluids Confined in Nanochannel, Case Stud. Therm. Eng. 5: 114-121 (2015).
[27] Tammann G., The Dependence of the Volume of Solutions on Pressure, Z. Phys. Chem. Stoechiom. Verwandtschafts, 17: 620-636 (1895).
[28] Tait P., Physics and Chemistry of the Voyage of HMS Challenger, Vol. II, Part IV, Sci. Pap. LXI (2) (1900).
[29] Dymond J., Malhotra R., The Tait Equation: 100 Years, Int. J. Thermophys., 9: 941-951 (1988).
[30] Sharma U.D., Kumar M., Effect of Pressure on Nanomaterials, Phys. B Condens. Matter, 405: 2820-2826 (2010).
[31] S.P. Tan, M. Piri, Equation-of-State Modeling of Confined-Fluid Phase Equilibria in Nanopores, Fluid Phase Equilibria, 393: 48-63 (2015).
[32] Rowlinson J.S., Widom B., "Molecular theory of capillarity", Courier Corporation, (2013).
[33] Vajjha R.S., Das D.K., Mahagaonkar B.M., Density Measurement of Different Nanofluids and Their Comparison with Theory, Petrol. Sci. Technol., 27: 612-624 (2009).
[34] Yousefi F., Amoozandeh Z., A New Model to Predict the Densities of Nanofluids Using Statistical Mechanics and Artificial Intelligent Plus Principal Component Analysis, Chinese Journal of Chemical Engineering, 25: 1273-1281 (2017).
[35] Karimi H., Yousefi F., Application of Artificial Neural Network-Genetic Algorithm (ANN-GA) to Correlation of Density in Nanofluids, Fluid Phase Equilibria, 336: 79-83 (2012).
[36] Hosseini S.M., Alavianmehr M.M., Moghadasi J., Application of Perturbed Hard-Sphere Equation of State to the Study of Volumetric Properties of Nano-Fluids, Fluid Phase Equilibria, 423: 181-189 (2016).
[37] Tao F.M., Mason E., Statistical‐Mechanical Equation of State for Nonpolar Fluids: Prediction of Phase Boundaries, The Journal of chemical physics, 100: 9075-9087 (1994).
[38] Ihm G., Song Y., Mason E., Equation of State for Mixtures of Non-Polar Molecular Fluids, Molecular Physics, 75: 897-915 (1992).
[39] Ihm G., Song Y., Mason E., Strong Principle of Corresponding States: Reduction of a PVT Surface to a Line, Fluid phase equilibria, 75: 117-125 (1992).
[40] Papari M.M., Hosseini Bab Anari E., Moghadasi J., Modeling Associatedfluids Using Tao and Mason's Equation of State, High Temp. High Pressures, 39: 307-319 (2010).
[42] Yousefi F., Moghadasi J., Papari M.M., Campo A., Extension of Tao–Mason Equation Ofstate to Mixtures: Results for PVTx Properties of Refrigerants Fluid Mixtures, Ind. Eng. Chem. Res., 48: 5079-5084 (2009).
[43] Alavianmehr M.M., Pahlavan F., Moghadasi J., Hosseini S.M., Modeling Thermodynamic Properties of Refrigerants from New Version of Tao-Mason Equation of State, International Journal of Refrigeration, 45: 100-106 (2014).
[44] Papari M.M., Nejabat R., Moghadasi J., Campo A., Modification of Tao-Mason Equation of State: Application to Refrigerant Fluids, International Journal of Refrigeration, 34: 268-274 (2011).
[45] Kiani M., Papari M. M., Nowruzian Z., Moghadasi J., Application of Modified Tao-Mason Equation of State to Refrigerant Mixtures, Korean Journal of Chemical Engineering, 32: 1361-1368, (2015).
[46] Papari M. M., Moghadasi J., Fadaei F., Campo A., Modeling Vapor-Liquid Equilibrium of Various Binary Mixtures with a Statistically Based Equation of State, Journal of Molecular Liquids, 165: 87-93 (2012).
[47] Alavianmehr M.M., Hosseini S.M., Amighi S., Volumetric Properties of Ionic Liquids and Their Binary Mixtures from Improved Tao–Mason Equation of State, Journal of Molecular Liquids, 191: 166-171 (2014).
[48] Yousefi F., Karimi H., Modification of Tao–Mason Equation of State to Ionic Liquids, Ionics, 18 135-142 (2012).
[50] Yousefi F., Karimi H., Papari M. M., Extension of Tao-Mason Equation of State to Heavy n-Alkanes, Chinese Journal of Chemical Engineering, 21: 894-900 (2013).
[51]Karimi H., Yousefi F., Papari M.M., Prediction of Volumetric Properties (p-v-T) of Natural Gas Mixtures Using Extended Tao-Mason Equation of State, Chinese Journal of Chemical Engineering, 19: 496-503 (2011).
[52] Kiani M., Equation of State for Polymers Based on Crystallization Data, Journal of Molecular Liquids, 225: 672-678, (2017).
[53] Kiani M., Papari M.M., Behjatmanesh-Ardakani R., Moghadasi J., Boushehri A., Modification of Tao-Mason Equation of State: Application to Polymer Melts, Physics and Chemistry of Liquids, 52: 17-25 (2014).
[54] Papari M.M., Behjatmanesh-Ardakani R., Kiani M., Moghadasi J., Campo A., Equation of State for Polymers Based on Glass Transition Data, Colloid and Polymer Science, 289: 1081-1087 (2011).
[55] Yousefi F., Karimi H., Gomar M., Volumetric Properties of Polymer Blends from Tao–Mason equation of state, Polym. Bull.,70: 1445-1455 (2013).
[56] Yousefi F., Karimi H., Gomar M., Ability of Analytical and Artificial Approaches for Prediction of the Volumetric Properties of Some Polymer Blends, Fluid Phase Equilibria, 355: 92-98 (2013).
[57] Yousefi F., Karimi H., P–V–T Properties of Polymer Melts Based on Equation of State and Neural Network, European Polymer Journal, 48: 1135-1143 (2012).
[58] Kiani M., Papari M.M., Behjatmanesh-ArdakaniR., Moghadasi J., BoushehriA., Modification of Tao-Mason Equation of State: Application to Polymer Melts, Physics and Chemistry of Liquids, 52: 17-25 (2014).
[59] Yousefi F., Modeling the Volumetric Properties of Polymer Melts Using Equation of State, High-Temperature High Pressure, 42:211-226 (2013).
[66] Sengupta A., Sarkar C.K., "Introduction to Nano: Basics to Nanoscience and Nanotechnology", Springer Verlag (Berlin/Heidelberg) (2015).
[67] Rieth M., Schommers W., "Handbook of Theoretical and Computational Nanotechnology", American Scientific Publishers,Chapter 16, PP: 1–45, (2005).
[68] Kiani M., Equation of State for Polymers Based on Crystallization Data, Journal of Molecular Liquids, 225: 672-678 (2017).
[69] Weeks J.D., Chandler D., Andersen H.C., Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids, The Journal of Chemical Physics, 54: 5237-5247 (1971).
[69] Ihm G., Song Y., Mason E., Equation of State For Mixtures of Non-Polar Molecular Fluids, Molecular Physics, 75: 897-915 (1992).
[71] Jones J., Sc. D., On the Determination of Molecular Fields. II. from the Equation of State of a Gas, Proceedings of the Royal Society A, 106: 463-477 (1924).
[72] Jones J., Ingham A., On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy, Proceedings of the Royal Society A, 107: 636-653 (1925).
[73] Lennard-Jones J.E., Cohesion, Proceedings of the Physical Society, 43: 461-482 (1931).
[74] Mie G., Zur kinetischen Theorie Der Einatomigen Körper, Annalen der Physik, 316:657-697 (1903).
[75] Morse P.M., Diatomic Molecules According to the Wave Mechanics.II. Vibrational Levels, Physical Review, 34: 57-64 (1929).
[76] Lorentz H., Ueber die Anwendung des Satzes vom Virial in der Kinetischen Theorie der Gase, Annalen der Physik, 248: 127-136 (1881).
[77] Berthelot D., Sur le Mélange des Gaz, Compt. Rendus, 126: 1703-1706 (1898).
[78] Saxena S., Gambhir R., Second Virial Coefficient of Gases and Gaseous Mixtures on the Morse Potential, Molecular Physics, 6: 577-583 (1963).
[79] Wigner E., On the Quantum Correction for Thermodynamic Equilibrium, Physical Review, 40: 749 (1932).
[80] Kirkwood J.G., Statistical Theory of Low-Frequency Intermolecular Forces, The Journal of Chemical Physics, 1: 597-605 (1933).
[81] Kirkwood J.G., Quantum Statistics of Almost Classical Assemblies, Physical Review, 45: 116 (1934).
[83] Deiters U.K., Kraska T., "High-Pressure Fluid Phase Equilibria: Phenomenology and Computation", Oxford, UK, (2012).
[84] Cabaleiro D., Pastoriza-Gallego M., Piñeiro M., Lugo L., Characterization and Measurements of Thermal Conductivity, Density and Rheological Properties of Zinc Oxide Nanoparticles Dispersed in (Ethane-1, 2-diol+ Water) Mixture, The Journal of Chemical Thermodynamics, 58: 405-415 (2013).
[85] Zafarani-Moattar M.T., Majdan-Cegincara R., Effect of Temperature on Volumetric and Transport Properties of Nanofluids Containing ZnO Nanoparticles Poly (Ethylene Glycol) and Water, The Journal of Chemical Thermodynamics, 54: 55-67 (2012).
[86] Eslami H., Papari M.M., Boushehri A., On the Equation of States for Quantum Fluid Mixtures, Journal of the Physical Society of Japan, 70: 1015-1018 (2001).
[87] Saltelli A., Annoni P., How to Avoid a Perfunctory Sensitivity Analysis, Environmental Modelling & Software, Procedia-Social and Behavioral Sciences, 25: 1508-1517 (2010).
[88] مجدان سقین سرا، رقیه؛ غضنفر اقدم، مهسا، اثر نانوذره­های منیزیم اکسید در ویژگی­های حجمی و رئولوژیکی محلول­های دارای پلی اتیلن گلیکول، نشریه شیمی و مهندسی شیمی ایران،  (2)37: 45 تا 60 (1397).
[90] Eliassi A., Modarress H., Mansoori G.A., Densities of Poly (ethylene glycol) + Water Mixtures in the 298.15− 328.15 K Temperature Range, Journal of Chemical & Engineering Data, 43: 719-721 (1998).
[91] Rodríguez G.A., Holguín A.R., Martínez F., Khoubnasab jafari M., Jouyban A., Volumetric Properties of (PEG 400+ Water) and (PEG 400+ Ethanol) Mixtures at Several Temperatures Andcorrelation with the Jouyban-Acree Model, Revista Colombiana de Ciencias Químico-Farmacéuticas, 41:187-202 (2012).
[92] Cabaleiro D., Pastoriza-Gallego M.J., Gracia-Fernández C., Piñeiro M.M., Lugo L., Rheological and Volumetric Properties of TiO2-Ethylene Glycol Nanofluids, Nanoscale Research Letters, 8: 286-299 (2013).
[93] Dortmund Data Bank, 2017,
[94] Kell G., Whalley E., Reanalysis of the Density of Liquid Water in the Range 0–150 C and 0–1 kbar, The Journal of Chemical Physics, 62: 3496-3503 (1975).
[95] Muller E.A., Rasmussen P., Densities and excess Volumes in Aqueous Poly (ethylene glycol) Solutions, Journal of Chemical and Engineering Data, Journal of Chemical & Engineering Data, 36: 214-217 (1991).
[96] Mariano A., Pastoriza-Gallego M.J., Lugo L., Camacho A., Canzonieri S., Piñeiro M.M., Thermal Conductivity, Rheological Behaviour and Density of Non-Newtonian Ethylene Glycol-Based SnO2 Nanofluids, Fluid Phase Equilibria, 337: 119-124 (2013).
[97] Mariano A., Pastoriza-Gallego M.J., Lugo L., Mussari L., Piñeiro M.M., Co3O4 Ethylene Glycol-Based Nanofluids: Thermal Conductivity, Viscosity and High-Pressure Density, International Journal of Heat and Mass Transfer, 85: 54-60 (2015).
[98] Pastoriza-Gallego M., Casanova C., Legido J.a., Piñeiro M., CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity, Fluid Phase Equilibria, 300: 188-196 (2011).