Synthesis and Thermal Stability Analysis of Slurry Core-Shell Nano Phase Change Materials

Document Type : Research Article

Authors

1 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

2 Department of Chemical Engineering, Shiraz University, Shiraz, I.R. IRAN

Abstract

The energy crises of the current century, led humans to ponder new energy sources. One of the interesting methods is the application of Phase Change Materials (PCMs), which is not only used for the purpose of storing heat energy but also is used for the purpose of heat insulation. Besides their advantages, PCMs may have some limitations such as leaking problems and low thermal conduction coefficient. Thus, adding metallic nanoparticles and shell-core structures can improve their thermal properties. In this research, N-octadecane is chosen as core and methyl methacrylate as a shell to synthesize nanoscale materials with core-shell structure. In this work, instruments including SEM, DSC, TEM, and sonicator have been used. The results of the experiments showed that synthesized phase change materials have a mean 79 nm diameter and have a core-shell structure. On the other hand, slurry nanophase change materials have maintained their thermal properties after many cycles and this can be considered as the main advantage in thermal management of different systems. In summary, it is revealed that PCMs and their composites possess advantages in thermal applications. These materials can have a critical and valuable role in thermal management.

Keywords

Main Subjects


[2] باباپور، عزیز؛ بخشوده­نیا، یاسر؛ بخشوده­نیا، محمد؛ مروری بر مدلسازی عددی و آنالیز کاربرد مواد تغییرفازدهنده در ساختمان جهت کاهش مصرف انرژی، "پنجمین کنفرانس انرژی­های تجدیدپذیر، پاک و کارآمد"، اسفند (1392).
[5] باباپور، عزیز؛ پیشکارآذری، رضا؛ گلستانه، سیدایمان؛ قاضی طباطبایی، زهره؛ شبیه‌سازی مدیریت حرارتی مواد نانوکامپوزیت تغییرفازدهنده توسط فناوری CFD، نشریه شیمی و مهندسی شیمی ایران، (4)37: 195 تا 210 (1397).
[6] باباپور، عزیز؛ حقیقی، علیرضا؛ استفاده از انرژیهای تجدیدپذیر راهی موثر جهت کاهش آلودگی محیط زیست، نشریه دو فصلنامه انرژی­های تجدیدپذیر و نو، (9)1: 40 تا 50 (1397).
[7] Golestaneh S.I, Karimi G., Babapoor A., Torabi F., Thermal Performance of co-Electrospun Fatty Acid Nanofiber Composites in the Presence of Nanoparticles, Appl. Energy 212: 552-564 (2018).
[8] Babapoor A., Azizi M.M., Karimi G., Thermal Management of a Li-ion Battery Using Carbon Fiber-PCM Composites, Appl. Therm. Eng 82: 281–290 (2015).
[10] Babapoor A., Karimi G., Khorram M., Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning, Appl. Therm. Eng 99: 1225-1235 (2016).
[11] Babapoor A., Karimi G., Sabbaghi S., Thermal Characteristic of Nanocomposite Phase Change Materials During Solidification Process, J. Energy Storage  7: 74-81 (2016).
[12] Samimi F., Babapoor A., Azizi M.M., Karimi G., Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded with Carbon Fibers, Energy 96: 355-371 (2016).
[13] Karimi G., Azizi M.M., Babapoor A., Experimental Study of a Cylindrical Lithium Ion Battery Thermal Management Using Phase Change Material Composites, J. Energy Storage. 8: 168-174 (2016).
[14] Babapoor A., Karimi G., Golestaneh S.I., Ahmadi Mezjin M., Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization, Appl. Therm. Eng 118: 398-407 (2017).
[15] Chaudhuri R.G., Paria S., Core/shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem. Rev. 112: 2373–2433 (2012).
[16] Wu W., Bostanci H., Chow L.C, Ding S.J, Hong Y., Su M., Kizito J.P., Gschwender L., Snyder C.E., Jet Impingement and Spray Cooling Using Slurry of Nano Encapsulated Phase Change Materials, Int. J. Heat Mass Transfer 54: 2715–2723 (2011).
[17] Delgado M., Lázaro A., Mazo J., Zalba B., Review on Phase Change Material Emulsions and Microencapsulated Phase Change Material Slurries: Materials, Heat Transfer Studies and Applications, Renewable Sustainable Energy Rev 16: 253-273 (2012).
[18] Zhang P., Ma Z.W., Wang R.Z., An Overview of Phase Change Material Slurries: MPCS and CHS, Renewable Sustainable Energy Rev 14: 598–614 (2010).
[19] Sabbah R., Farid M.M., Al-Hallaj S., Micro-Channel Heat Sink with Slurry of Water with Micro-Encapsulated Phase Change Material: 3D-Numerical Study, Appl. Therm. Eng 29: 445–454 (2008).
[20] Kondle S., Alvarado J.L., Marsh C., Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Microchannels, J. Heat Transfer 135: 1-11 (2013).
[22] Zhang H., Wang X., Fabrication and Performances of Microencapsulated Phase Change Materials Based on n-Octadecane Core and Resorcinol-Modified Melamine-Formaldehyde Shell, Colloids Surf., A: Physicochemical and Engineering Aspects 332: 129–138 (2009).
[26] Wu W., H. Bostanci H., Chow L.C., Ding S.J., Hong Y., Su M., Kizito J.P., Gschwender L., Snyder C.E., Jet Impingement and Spray Cooling Using Slurry of Nano-Encapsulated Phase Change Materials, Int. J. Heat Mass Transfer 54: 2715-2723 (2011).