Functionalization of Multi-Walled Carbon Nanotubes by Diamine Precursor to Increase CO2 Adsorption

Document Type : Research Article

Authors

1 College of Chemical Engineering,University of Tehran

2 Institute of Petroleum Engineering, School of Chemical Engineering, University of Tehran, Tehran, I.R. IRAN

Abstract

This research aims to modify multi-walled carbon nanotubes to increase the carbon dioxide adsorption capacity. To achieve this goal, pristine multi-walled carbon nanotubes were functionalized in a two-step process. In the first step, oxidized MWCNTs were prepared by pre-treatment of MWCNTs with sulfuric acid and nitric acid. In the second step, to improve the performance of multi-walled carbon nanotubes in carbon dioxide adsorption, oxidized MWCNTs were functionalized with 1,3-diaminopropane (DAP) solution. The characteristics of the functionalized MWCNTs were studied by Fourier Transform InfraRed (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), and Nitrogen adsorption-desorption analysis The CO2 adsorption capacity was measured at the temperature range of 303-323 K and pressures up to 17.3 bar using the volumetric method. Results showed that 92.71 mg/g of CO2 were captured by amine-functionalized MWCNTs at 303 K and 17.3 bar, while the adsorption capacity of the raw MWCNTs was only 48.49 mg/g under the same conditions. This result suggested that amine groups were attached to carbon surfaces in the impregnation process, making CO2 affinity sites on MWCNT surfaces which increased the adsorption capacity of MWCNTs.

Keywords

Main Subjects


[1] Hu, H., Zhang, T., Yuan, S., Tang, S., Functionalization of Multi-Walled Carbon Nanotubes with Phenylenediamine for Enhanced CO2 Adsorption, Adsorption, 23(1): 73-85 (2017).
[2] Mondal, M. K., Balsora, H. K., Varshney, P., Progress and Trends in CO2 Capture/Separation Technologies: A Review, Energy, 46(1): 431-441(2012).
[3] Paracelsus, T., Die Dritte Defension Wegen Des Schreibens Der Neuen Rezepte, Septem Defensiones, 1538: 510 (1965).
[4] Ye, Q., Jiang, J., Wang, C., Liu, Y., Pan, H.,  Shi, Y., Adsorption of Low-Concentration Carbon Dioxide on Amine-Modified Carbon Nanotubes at Ambient Temperature, Energy & Fuels, 26(4): 497-2504 (2012).
[6] Stangeland, A., A Model for the CO 2 Capture Potential,  International Journal of Greenhouse Gas Control, 1(4): 418-429 (2007).
[7] White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., Pennline, H. W., Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers, Journal of the Air & Waste Management Association, 53(6): 645-715 (2003).
[8]    Aaron, D., Tsouris, C., Separation of CO2 from Flue Gas: A Review, Separation Science and Technology, 40(1-3): 321-348 (2005).
[9]  اسحاقی گرجی ز؛ ابراهیم پور گرجی ع.؛ ریاحی س.، مطالعه مولکولی ثابت هنری گاز کربن دی اکسید در حلال‌های خالص. نشریه شیمی و مهندسی شیمی ایران، 35(4): 99 تا110 (1396).
[10] Rochelle, G. T., “Amine Scrubbing for CO2 Capture,Science, 325(5948): 1652-1654 (2009).
[11] Khatri, R. A., Chuang, S. S., Soong, Y., Gray, M., Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture, Energy & Fuels, 20(4): 1514-1520 (2006).
[12] Hsu, S.-C., Lu, C., Su, F., Zeng, W.,  Chen, W., Thermodynamics and Regeneration Studies of CO 2 Adsorption on Multiwalled Carbon Nanotubes, Chemical Engineering Science, 65(4): 1354-1361 (2010).
[13] Zhu, Z.-Z., Wang, Z., Li, H.-L., Functional Multi-Walled Carbon Nanotube/Polyaniline Composite Films as Supports of Platinum for Formic Acid Electrooxidation, Applied Surface Science, 254(10): 2934-2940 (2008).
[14] Smart, S., Cassady, A., Lu, G., Martin, D., The Biocompatibility of Carbon Nanotubes, Carbon, 44(6): 1034-1047 (2006).
[15] Gui, M. M., Yap, Y. X., Chai, S.-P.,  Mohamed, A. R., Multi-Walled Carbon Nanotubes Modified with (3-Aminopropyl) Triethoxysilane for Effective Carbon Dioxide Adsorption, International Journal of Greenhouse Gas Control, 14: 65-73 (2013).
[16] Schobert, H. H., Maroto-Valer, M. M., Lu, Z., “Development of Activated Carbons from Coal Combustion by-Products”, Pennsylvania State University, USA (2003).
[17] Yang, W., Thordarson, P., Gooding, J. J., Ringer, S. P., Braet, F., Carbon Nanotubes for Biological and Biomedical Applications, Nanotechnology, 18(41): 412001 (2007).
[18] Su, F., Lu, C., Cnen, W., Bai, H., Hwang, J. F., Capture of CO2 from Flue Gas via Multiwalled Carbon Nanotubes, Science of the total environment, 407(8): 3017-3023 (2009).
[19] Lu, C., Bai, H., Wu, B., Su, F.,  Hwang, J. F., Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites, Energy & Fuels, 22(5): 3050-3056 (2008).
[20] Lu, C., Wu, B., Chen, W., Lin, Y.-K., Bai, H., Capture of Carbon Dioxide by Modified Multiwalled Carbon Nanotubes, Environanotechnology, 55-69: Elsevier Amsterdam (2010).
[21] Lee, M.-S., Lee, S.-Y., Park, S.-J., Preparation and Characterization of Multi-Walled Carbon Nanotubes Impregnated with Polyethyleneimine for Carbon Dioxide Capture, International Journal of Hydrogen Energy, 40(8): 3415-3421 (2015).
[22] Khalili, S., Ghoreyshi, A. A., Jahanshahi, M., Pirzadeh, K., Enhancement of Carbon Dioxide Capture by Amine‐Functionalized Multi‐Walled Carbon Nanotube, Clean–Soil, Air, Water, 41(10): 939-948 (2013).
[23] Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J.,  Sing, K. S., Physisorption of Gases, with Special Reference to The Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9-10): 1051-1069 (2015).
[24] Liu, Q., Shi, Y., Zheng, S., Ning, L., Ye, Q., Tao, M., He, Y., Amine-Functionalized Low-Cost Industrial Grade Multi-Walled Carbon Nanotubes for the Capture of Carbon Dioxide, Journal of Energy Chemistry, 23(1): 111-118 (2014).
[25]  Yao, M., Dong, Y., Hu, X., Feng, X., Jia, A., Xie, G., Hu, G., Lu, J., Luo, M., Fan, M., Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO2 Capture, Energy & Fuels, 27(12): 7673-7680 (2013).