Modeling of Mass Transfer in Reactive Absorption Process and Investigation of Different Parameters Effect on Mass Transfer Flux

Document Type : Research Article


Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, University of Science and Technology, Tehran, I.R. IRAN


In the present study, carbon dioxide mass transfer flux in the reactive absorption process was modeled by three solutions of methyldiethanolamine (MDEA), monoethanolamine (MEA), and piperazine (PZ) using the film theory model and all governing equations solved simultaneously. The effects of all components' concentration during film and mass transfer flux with and without film displacement were investigated and predicted values were compared with experimental data of the carbon dioxide absorption process in the desired solutions. The influence of various dimensionless parameters including film and loading parameters as well as the effects of reaction, diffusion, film velocity, and eddy on mass transfer in the proposed model has been studied. The deviations were calculated from the experimental data for the mass transfer flux by calculating the average relative deviation (ARD). The values of ARD were obtained at about 5.30%, 8.24%, and 6.56% for PZ, MEA, and MDEA solutions respectively. Moreover, based on the film displacement, the mass transfer flux was affected and the average relative deviations decreased. For PZ solution, 0.1% and for MEA and MDEA solutions, 0.6% and 1.1% error reductions were observed, respectively. Furthermore, the results show that the effects of reaction and diffusion on the mass transfer flux are on average more than 35% than the effects of film velocity and eddy influence.


Main Subjects

[1] Etemad E., Ghaemi A., Shirvani M., Rigorous Correlation for CO2 Mass Transfer Flux in Reactive Absorption Processes, International Journal of Greenhouse Gas Control, 42: 288-295 )2015).
[2] Mondal M.K., Balsora H.K., Varshney P., Progress and Trends in CO2 Capture/Separation Technologies: a Review, Energy, 46(1): 431-441 (2012).
[3] Pashaei H., Zarandi M.N., Ghaemi A., Experimental Study and Modeling of CO2 Absorption into Diethanolamine Solutions Using Stirrer Bubble Column, Chemical Engineering Research and Design, 121: 32-43 )2017(.
[4] Ghaemi A., Shahhosseini S., Ghannadi Maragheh M., Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 30(2): 43-50 )2011(.
[5] Kohl A., Nielsen R., "Gas purification 5th ed", Houston: Gulf Publishing Company, )1997(.
[6] Hockstad L., Hanel L., Inventory of US Greenhouse Gas Emissions and Sinks (No. Cdiac: EPA-EMISSIONS). Environmental System Science Data Infrastructure for a Virtual Ecosystem (2018).
[7] Yang H., et al., Progress in Carbon Dioxide Separation and Capture: a Review, Journal of Environmental Sciences, 20(1): 14-27 )2008(.
[8] بلورچیان تبریزی س.ز.، قائمی ا.، شاه حسینی ش.، بررسی تجربی مکانیسم‌های انتقال جرم و مدل سطح پاسخ جذب گاز کربن دی‌اکسید در نانو سیال آب ـ آلومینیوم هیدروکسید، نشریه شیمی و مهندسی شیمی ایران، (2)40: 105 تا 113 (1400).
[9] مهدی‌زاده م.، قائمی ا.، مدل‌سازی و شبیه‌سازی ستون بستر ثابت جذب واکنش‌دار کربن دی‌اکسید توسط پلی‌اسپارتامید، نشریه شیمی و مهندسی شیمی ایران، (4)38: 189 تا 198 (1398).
[11] Naeem S., Ghaemi A., Shahhosseini S., Experimental Investigation of CO2 Capture using Sodium Hydroxide Particles in a Fluidized Bed, Korean Journal of Chemical Engineering, 33(4): 1278-1285 )2016(.
[12] رستگار ژ.، قائمی ا.، شیروانی م.، مطالعه تجربی جذب کربن‌دی‌اکسید با استفاده از محلول آبی پتاسیم هیدروکسید، نشریه شیمی و مهندسی شیمی ایران، (1)40: 115 تا 126 (1400).
[14] رمضانی پور ح.، قائمی ا.، قنادزاده گیلانی ح.، مطالعه تجربی و بهینه‏ سازی جذب سطحی گاز کربن دی اکسید توسط جاذب پلیمری میکرومتخلخل، نشریه شیمی و مهندسی شیمی ایران، (2)40: 95 تا 104 (1400).
[15] فشی ف.، قائمی ا.، مرادی پ.، مقایسه عملکرد اصلاح جاذب‏ های زئولیت و آلومینا با محلول پیپرازین برای افزایش شدت جذب گاز کربن دی‌اکسید، نشریه شیمی و مهندسی شیمی ایران، (2)39: 99 تا 110 (1399).
[16] Mandal B., Guha M., Biswas A.,  Bandyopadhyay S., Removal of Carbon Dioxide by Absorption in Mixed Amines: Modelling of Absorption in Aqueous MDEA/MEA and AMP/MEA Solutions, Chemical Engineering Science, 56(21-22): 6217-6224 )2001(.
[17] Aboudheir A., Tontiwachwuthikul P., Chakma A., Idem R., Kinetics of the Reactive Absorption of Carbon Dioxide in High CO2-Loaded, Concentrated Aqueous Monoethanolamine Solutions, Chemical Engineering Science, 58(23-24): 5195-5210 )2003(.
[19] Bougie F., liuta M.C.I, Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-Hydroxymethyl-1, 3-Propanediol, Chemical Engineering Science, 64(1): 153-162 (2009).
[20] Gómez-Díaz D., Navaza J., Sanjurjo B., Vázquez-Orgeira L., Carbon Dioxide Absorption in Glucosamine Aqueous Solutions, Chemical Engineering Journal, 122(1-2): 81-86 (2006).
[21] Liao C.-H., Li M.-H., Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine+ N-Methyldiethanolamine, Chemical Engineering Science, 57(21): 4569-4582 (2002).
[22] Navaza J.M., Gómez-Díaz D.,  La Rubia M.D., Removal Process of CO2 using MDEA Aqueous Solutions in a Bubble Column Reactor, Chemical Engineering Journal, 146(2): 184-188 (2009).
[23] Zhang X., Schubert S., Gruenewald M.,  Agar D., Studies on the Kinetics of Carbon Dioxide Absorption with Immobilised Amines (IA), Chemical Engineering Journal, 107(1-3): 97-102 (2005).
[24] Niknafs H., Ghaemi A., Shahhosseini S., Dynamic Heat and Mass Transfer Modeling and Control in Carbon Dioxide Reactive Absorption Process, Heat and Mass Transfer, 51(8): 1131-1140 (2015).
[25] Taheri F.S., Ghaemi A., Maleki A., Shahhosseini S., High CO2 Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite, Energy and Fuels, 33(6): 5384-5397 (2019).
[26] Noeres C., Kenig E., Górak A., Modelling of Reactive Separation Processes: Reactive Absorption and Reactive Distillation, Chemical Engineering and Processing: Process Intensification, 42(3): 157-178 (2003).
[27] Taylor R., Krishna R., "Multicomponent Mass Transfer", John Wiley & Sons, (1993).
[29] Brettschneider O., Thiele R., Faber R., Thielert H., Wozny G., Experimental Investigation and Simulation of the Chemical Absorption in a Packed Column for the System NH3–CO2–H2S–NaOH–H2O, Separation and Purification Technology, 39(3): 139-159 (2004).
[30] Kenig E., Butzmann F., Kucka L., Górak A., Comparison of Numerical and Analytical Solutions of a Multicomponent Reaction-Mass-Transfer Problem in Terms of the Film Model, Chemical Engineering Science, 55(8): 1483-1496 (2000).
[31] Mirzaei F. Ghaemi A., An Experimental Correlation for Mass Transfer Flux of CO2 Reactive Absorption into Aqueous MEA‐PZ Blended Solution, Asia‐Pacific Journal of Chemical Engineering, 13(6): e2250 (2018).
[32] Pashaei H., Ghaemi A., Nasiri M., Experimental Investigation of CO2 Removal using Piperazine Solution in a Stirrer Bubble Column, International Journal of Greenhouse Gas Control, 63: 226-240 (2017).
[33] Cussler E.L., "Diffusion: Mass Transfer in Fluid Systems". Cambridge university press, (2009).
[34] Edali M., Idem R., Aboudheir A., 1D and 2D Absorption-Rate/Kinetic Modeling and Simulation of Carbon Dioxide Absorption into Mixed Aqueous Solutions of MDEA and PZ in a Laminar Jet Apparatus, International Journal of Greenhouse Gas Control, 4(2): 143-151 (2010).
[35] Norouzbahari S., Shahhosseini S., Ghaemi A., CO2 Chemical Absorption into Aqueous Solutions of Piperazine: Modeling of Kinetics and Mass Transfer Rate, Journal of Natural Gas Science and Engineering, 26: 1059-1067 (2015).
[36] Hemmati A., Shirvani M., Torab-Mostaedi M., Ghaemi A., Mass Transfer Coefficients in a Perforated Rotating Disc Contactor (PRDC), Chemical Engineering and Processing: Process Intensification, 100: 19-25 (2016).
[37] Hemmati A., Torab-Mostaedi M., Asadollahzadeh M., Mass Transfer Coefficients in a Kühni Extraction Column, Chemical Engineering Research and Design, 93: 747-754 (2015).
[38] Liu J., Wang S., Zhao B., Qi G., Chen C., Study on Mass Transfer and Kinetics of CO2 Absorption into Aqueous Ammonia and Piperazine Blended Solutions, Chem. Eng. Sci., 75: 298-308 (2012).
[39] Ghaemi A., Torab-Mostaedi M., Maragheh M. G., Shahhosseini S., Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions, Chemical Engineering Communications, 198(10): 1169-1181 (2011).
[40] Last W., Stichlmair J., Determination of Mass Transfer Parameters by Means of Chemical Absorption, Chemical Engineering and Technology, 25(4): 385-391 (2002).
[41] Kenig E., Schneider R., Gorak A., Multicomponent Unsteady-State Film Model: a General Analytical Solution to the Linearized Diffusion–Reaction Problem, Chemical Engineering Journal, 83(2): 85-94 (2001).
[42] Dugas R., Rochelle G., Absorption and Desorption Rates of Carbon Dioxide with Monoethanolamine and Piperazine, Energy Procedia, 1(1): 1163-1169 (2009).
[43] Killion J. D.,  Garimella S., A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption, International Journal of Refrigeration, 24(8): 755-797 (2001).
[44] Toor H., Marchello J., Film‐Penetration Model for Mass and Heat Transfer, AIChE Journal, 4(1): 97-101 (1958).
[45] Bougie F., Iliuta M. C., CO2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling, Journal of Chemical Engineering Data, 56(4): 1547-1554 (2011).
[46] Moioli S., Pellegrini L.A., Gamba S., Simulation of CO2 Capture by MEA Scrubbing with a Rate-based Model, Procedia Engineering, 42: 1651-1661 (2012).
[49] Buzad G., Doherty M., New Tools for the Design of Kinetically Controlled Reactive Distillation Columns for Ternary Mixtures, Computers and Chemical Engineering, 19(4): 395-408 (1995).
[50] Rumpf B., Maurer G., An Experimental and Theoretical Investigation on the Solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes, Berichte der Bunsengesellschaft fuer physikalische chemie, 97(1): 85-97 (1993).
[51] Wagner W., Pruss A., "International Equations for the Saturation Properties of Ordinary Water Substance". Revised According to the International Temperature Scale of 1990. Addendum to
J. Phys. Chem. Ref. Data 16, 893 (1987),  Journal of Physical and Chemical Reference Data, 22(3), 783-787, (1993).
[52] Thomsen K., Modeling Electrolyte Solutions with the Extended Universal Quasichemical (UNIQUAC) Model, Pure Applied Chemistry, 77(3): 531-542 (2005).
[53] Snijder E.D., te Riele M.J.M., Versteeg G.F., Van Swaaij W., Diffusion Coefficients of Several Aqueous Alkanolamine Solutions, Journal of Chemical Engineering data, 38(3): 475-480 (1993).
[54] Versteeg G.F., Van Swaaij W.P., Solubility and Diffusivity of Acid Gases (Carbon Dioxide, Nitrous Oxide) in Aqueous Alkanolamine Solutions, Journal of Chemical Engineering Data, 33(1): 29-34 (1988).