Optimization of a Hybrid Renewable Energy System for Power and Hydrogen Production

Document Type : Research Article

Authors

Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN

Abstract

In this research, a hybrid renewable system based on the use of solar and oceanic thermal energy to produce power and hydrogen by using a flat plate solar collector was investigated from a thermodynamic and economic point of view. The objective functions investigated in this research were exergy efficiency and cost rate. Collector mass flow rate, collector area, turbine inlet temperature, and solar radiation intensity were considered as four decision variables, and the effect of these parameters on system performance and system exergy loss was investigated. The optimization of objective functions was done by the Nelder-Mead method. From single-objective optimization, it was concluded that the best system exergy efficiency rate is 7.31% and the system cost rate is 27.48 $/hour in the optimal state. From the sensitivity analysis, it was concluded that increasing the parameters of the collector area, solar radiation intensity, and turbine inlet temperature had a positive effect on the system performance, and increasing the mass flow rate parameter of the solar collector had a negative effect on the system performance. Also, from the analysis of the exergy loss of the system, it was concluded that the increase in the intensity of solar radiation, the area of the collector, and the mass flow rate of the collector increase the overall exergy loss of the system, but the increase in the inlet temperature to the turbine decreases the exergy loss of the system.

Keywords

Main Subjects


[1] Maczulak A., "Renewable Energy: Sources and Methods," Facts on File, New York, (2010)
[2] Flannery T., "The Weather Markers," Text Publishing, Australia, (2005).
[4] یحیوی س.ر.، حقیقی م.، شفیعی س.، عبدالهی فر م.، رحمانی ف.، سنتز نانوکاتالیست – MgO3O2Ni-Co/Al به روش تلقیح برای تولید هیدروژن با استفاده از فرایند ریفورمینگ خشک متان، نشریه شیمی و مهندسی شیمی ایران، (2)37: 21 تا 32 (1397).
[5] Akbari Sene R., Rahmani F., Moradi G.M., Sharifnia S., Immobilization of TiO2 Nanoparticles Over Treated Natural Aluminasilicate for Hydrogen Production: Effect of Support Treatment and Operational Conditions of Process, Journal of Petroleum Research, 30: 14-30 (2020).
[6] Hernández-Romero I.M., Nápoles-Rivera F., Flores-Tlacuahuac A., Fuentes-Cortés L.F., Optimal Design of the Ocean Thermal Energy Conversion Systems Involving Weather and Energy Demand Variations, Chemical Engineering and Processing - Process Intensification, 157: 108114 (2020).
[7] Vera D., Baccioli A., Jurado F., Desideri U., Modeling and Optimization of an Ocean Thermal Energy Conversion System for Remote Islands Electrification, Renewable Energy, 162: 1399-1414 (2020).
[8] Wu Z., Feng W., Chen L., Tang W., Shi J., Ge Y., Constructal Thermodynamic Optimization for Ocean Thermal Energy Conversion System with Dual-Pressure Organic Rankine Cycle, Energy Conversion and Management, 210: 112727 (2020).
[11] Jiang J., Ming B., Huang Q., Chang J., Liu P., Zhang W., Ren K., Hybrid Generation of Renewables Increases the Energy System's Robustness in a Changing Climate, Journal of Cleaner Production, 324: 129205 (2021).
[12] Cao Y., Dhahad H.A., Togun H., Abdollahi Haghghi M., Athari H., Mustafa Mohamed A., Exergetic and Economic Assessments and Multi-Objective Optimization of a Modified Solar-Powered CCHP System with Thermal Energy Storage, Journal of Building Engineering, 43: 102702 (2021).
[15] Khani L., Jabari F., Jabari M., Mohammadi-ivatloo B., Design, Evaluation, and Optimization of an Efficient Solar-based Multi-Generation System with an Energy Storage Option for Iran’s Summer Peak Demand, Energy Conversion and Management, 242: 114324 (2021).
[16] Peng X., Bajaj I., Yao M., Maravelias C.T., Solid-Gas Thermochemical Energy Storage Strategies for Concentrating Solar Power: Optimization and System Analysis, Energy Conversion and Management, 245: 114636 (2021).
[17] Teymouri M., Sadeghi S., Moghimi M., Ghandehariun S., 3E Analysis and Optimization of an Innovative Cogeneration System based on Biomass Gasification and Solar Photovoltaic Thermal Plant, Energy, 230: 120646 (2021).
[19] Ding P., Zhang K., Yuan Z., Wang Z., Li D., Chen T., Shang J., Shofahaei R., Multi-Objective Optimization and Exergoeconomic Analysis of Geothermal-based Electricity and Cooling System Using Zeotropic Mixtures as the Working Fluid, J. Clean. Product., 294: 126237 (2021).
[20] Song G., Song X., Li G., Shi L., Wang G., Ji J., Xu F., Song Z., An Integrated Multi-Objective Optimization Method to Improve the Performance of Multilateral-Well Geothermal System, Renewable Energy, 172: 1233-1249 (2021).
[21] Ahmadi P., Dincer I., Rosen M.A., Energy and Exergy Analyses of Hydrogen Production via Solar-Boosted Ocean Thermal Energy Conversion and PEM Electrolysis, International Journal of Hydrogen Energy, 38(4): 1795-1805 (2013).
[22] ملکی ا.، لطفی پ.، شهرکی شهدآبادی ر.، احمدی م.ح.، پتانسیل سنجی مزرعه‌های خورشیدی با روش‌های تصمیم‌گیری چند معیاره در ایران، نشریه شیمی و مهندسی شیمی ایران، (3)40: 251 تا 271 (1400).
[23] موسوی و.ا.، فرزانه گرد م.، احمدی م.ح.، تحلیل اگزرژی و اگزرژی-اقتصادی سیکل رنکین آلی با محرک انرژی خورشیدی با استفاده از مواد تغییر فاز در تانک ذخیره‌سازی، نشریه شیمی و مهندسی شیمی ایران، (3)39: 247 تا 257 (1399).
[24] آریان فر ل.، یاری م.، عبدی اقدام ا.، تحلیل فنی ـ اقتصادی چرخه‌ی رانکین آلی تولید گرما و توان با منابع انرژی استان اردبیل، نشریه شیمی و مهندسی شیمی ایران، (3)36: 165 تا 185 (1396).
[25] کریمی نیا ح.، فرهادی ف.ا.، شبیه‌سازی و بررسی فنی ـ اقتصادی سامانه سردکن جذبی تک اثرۀ آب ـ لیتیم برومید مدد یافته با انرژی خورشیدی، نشریه شیمی و مهندسی شیمی ایران، (3)33: 53 تا 64 (1393).
[26] عرب ق.، قدمیان ح.، مدل‌سازی ترمواکونومیکی و تحلیل پارامتری چرخه هیبریدی پیل سوختی اکسید جامد تحت فشار / توربین گازی، نشریه شیمی و مهندسی شیمی ایران، (4)32: 93 تا 103 (1392).
[28] Bedakhanian A., Maleki A., Haghighat S., Utilizing the Multi-Objective Particle Swarm Optimization for Designing a Renewable Multiple Energy System on the Basis of the Parabolic Trough Solar Collector, International Journal of Hydrogen Energy, 47(86): 36433-36447(2022).
[29] زارع علی آبادی ح.، ساعی مقدم م.، بررسی تجربی اثر نانو ذره اکسید روی و پارامترهای فرایندی بر عملکرد حرارتی کلکتور خورشیدی صفحه تخت، نشریه شیمی و مهندسی شیمی ایران، (2)41: 85 تا 95 (1399).
[30] رضایی عزیزآبادی ح.، ضیابشرحق م.، مافی م.، شبیه­سازی یک طرح ابتکاری مایع­سازی هیدروژن برای استفاده از انرژی اتلافی نیروگاه­های گازی، نشریه شیمی و مهندسی شیمی ایران، (4)41: 383 تا 399 (1400).
[31] سعیدی م.، صفری پور م.، بررسی روش های بازیابی و مدیریت گازهای دورریز واحدهای صنعتی به منظور بازگشت به چرخه انرژی، نشریه شیمی و مهندسی شیمی ایران، (4)41: 327 تا 354 (1400).
[32] Ahmadi P., Dincer I., Rosen M.A., Multi-Objective Optimization of a Novel Solar-based Multigeneration Energy System, Sol. Energy, 108: 576–591 (2014).
[33] Farahat S., Sarhaddi F., Ajam H., Exergetic Optimization of Flat Plate Solar Collectors, Renew Energy, 34(4): 1169-74 (2009).
[34] Khanmohammadi S., Heidarnejad P., Javani N., Ganjehsarabi H., Exergoeconomic Analysis and Multi Objective Optimization of a Solar based Integrated Energy System for Hydrogen Production, International Journal of Hydrogen Energy, 42(33): 21443-21453 (2017).
[35] Psomopoulos C.S., Solar Energy: Harvesting the Sun’s Energy for Sustainable Future, Handbook of Sustainable Engineering, 1(117): 1065-1107 (2013).
[36] Ameri M., Ahmadi P., Khanmohammadi S., Exergy Analysis of a 420 MW Combined Cycle Power Plant, Int. J. Energy, 32(2): 175-183 (2007).
[37] Brown C.J., "Advanced Exergy and Exergoeconomic Analysis of the Major Components of a Combined Cycle Power Plant”, Thesis M.S.C, Texas A&M University, (2015).
[38] Peters M.S., Timmerhaus K., West R.E., “Plant Design and Economics for Chemical Engineers”, New York: McGraw-Hill (1968).
[39] Ahmadi P., Dincer I., Rosen M.A., Thermodynamic Modeling and Multi-Objective Evolutionary based Optimization of a New Multigeneration Energy System, Energy Conversion and  Management, 76: 282-300 (2013).
[40] Nelder J.A., Mead R., A Simplex Method for Function Minimization, Computer Journal, 7: 308–313 (1965).
[41] Rao S.S., Bard J., Engineering Optimization: Theory and Practice, IIE transactions, 29(9): 799 (1997).
[42] Ahmadi P., Dincer I., Rosen M.A., Multi-Objective Optimization of an Ocean Thermal Energy Conversion System for Hydrogen Production, International Journal of Hydrogen Energy, 40(24): 7601-7608 (2015).